
Diagnosability, Adequacy & Size: How Test Suites Impact Autograding

Benjamin S. Clegg
University of Sheffield

Phil McMinn
University of Sheffield

Gordon Fraser
University of Passau

Abstract

Automated grading is now prevalent in software
engineering courses, typically assessing the correctness
of students’ programs using automated test suites.
However, deficiencies in test suites could result in
inconsistent grading. As such, we investigate how
different test suites impact grades, and the extent to
which their observable properties influence these grades.
We build upon existing work, using students’ solution
programs, and test suites that we constructed using
a sampling approach. We find that there is a high
variation in grades from different test suites, with a
standard deviation of ∼10.1%. We further investigate
how several properties of test suites influence these
grades, including the number of tests, coverage, ability
to detect other faults, and uniqueness. We use our
findings to provide tutors with strategies for building test
suites that evaluate students’ software with consistency.
These strategies include constructing test suites with high
coverage, writing unique and diverse tests which evaluate
solutions’ correctness in different ways, and to run the
tests against artificial faults to determine their quality.

1. Introduction

Automated grading is often used in software
engineering courses, offering a means to quickly assess
a large number of students’ programs [1], which is
especially important with ever growing student cohorts.1

A common approach is to use automated test suites to
evaluate the correctness of students’ code [2]. However,
test suites can vary in quality, preventing them from
detecting some faults [3]. This produces a source of
potential inconsistency, inaccuracy and unfairness in
grades generated by these suites.

We illustrate such grading test suite issues with the

1BCS Press Office, “Record numbers choosing Computer Science
degrees”, https://www.bcs.org/more/about-us/press-
office/press-releases/record-numbers-choosing-
computer-science-degrees-new-data-reveals/

int max(int a, int b) {
if (a > b)
return a;

- return b; // Correct
+ return a; // Fault
}

(a) Example program
containing a mistake.

@Test void testA() {
assertEq(3, max(3, 2));

} // Passes

(b) Resulting grade: 100%.

@Test void testA() {
assertEq(3, max(3, 2));

} // Passes
@Test void testB() {
assertEq(3, max(2, 3));

} // Fails

(c) Resulting grade: 50%.

@Test void testC() {
assertEq(2, max(2, 1));
assertEq(2, max(1, 2));

} // Fails (2nd assert)
@Test void testD() {

assertEq(3, max(3, 1));
assertEq(3, max(2, 3));

} // Fails (2nd assert)

(d) Resulting grade: 0%.

Figure 1. Example test suites and a faulty method,

illustrating an impact on generated grades.

method definition in Figure 1a, which should return the
greatest of two integer parameters, but only ever returns
the first. If we consider grades to be calculated as the
percentage of tests that pass, the suite in Figure 1b yields
a grade of 100%; it only includes one test that never
exercises the fault. If we extend this suite to execute
more code, increasing coverage, it generates a more
reasonable grade of 50% (Figure 1c). However, even
with full coverage, extreme grades can still be generated;
in Figure 1d, both of the tests are very similar, and make
assertions that exercise the faulty line, so they both fail,
generating a grade of 0%. Instead, we can evaluate a
suite’s ability to isolate individual potential faults using
a diagnosability metric, such as uniqueness. Here, the
suite in Figure 1d has poor uniqueness, since every line
is covered the same way by each test. Comparatively, the
suite in Figure 1c achieves the best possible uniqueness
and generates the most reasonable grades; the return
statements are covered by different tests.

We seek to understand how such differences in
test suites affect students’ grades. We previously
investigated this, by measuring grades generated for
artificial faulty program variants, called mutants [4].
However, these mutants do not always perfectly reflect
students’ faults [5]. As such, we build upon our previous
work in this paper, using real students’ solution programs
in place of artificial mutants, to better reflect the real

Proceedings of the 55th Hawaii International Conference on System Sciences | 2022

Page 861
URI: https://hdl.handle.net/10125/79438
978-0-9981331-5-7
(CC BY-NC-ND 4.0)

influence of test suites on grades. In addition, we
hypothesise that suites which can isolate individual faults
should also produce fair and consistent grades. Since
fault diagnosability metrics can provide an estimate
of this quality, we expand upon our previous work
by also investigating the grading impact of three such
metrics: density, diversity, and uniqueness [6]. We
also revise our analysis technique, employing a relative
importance analysis instead of examining the coefficients
of linear models, in order to gain an accurate estimate
of the impact of various test suite properties on grading
consistency, even if the properties are correlated to one
another. We consider the following research questions:
RQ1: Do grades vary with different test suites?
We conducted a standard deviation analysis on the grades
generated by sampled test suites for students’ programs.
We found that the mean standard deviation of grades for
each solution is∼10.1%; different suites generate a wide
variety of grades.
RQ2: Which properties of test suites impact grades?
To further investigate exactly how test suites produce
the effect we observed in RQ1, we performed a relative
importance analysis using measurements of various test
suite properties and the changes in generated grades. We
observe that several factors of test suites influence the
generated grades for students’ solutions, including the
quantity of tests, coverage, uniqueness, and the ability
to detect other students’ faults and artificial mutants.
Using our findings, we formed strategies for tutors to
use in order to construct test suites that grade students’
programs consistently.

We provide three key contributions in this paper:
(1) evidence that different suites generate varying grades
for students’ programs; (2) a relative importance analysis
revealing how a suite’s properties influence these grades,
with different results to the existing work; and (3) five
strategies for tutors to improve their grading test suites.

2. Background

2.1. Existing Work

We previously investigated how different test suites
generated varying grades, and how properties of the
suites influence this variation [4]. We constructed test
suites by randomly sampling from a large set of tests,
and executed these test suites on simple artificial faulty
variants of their associated subject programs, called
mutants. Our results revealed that these varying suites
had a significant variation in grades, with a mean standard
deviation of 2.94%, despite the mean grade only being
∼96.5%. While we later found that the detection of
mutants and students’ faults are correlated [5], there are

still some differences between mutants and real faults. In
particular, mutants typically contain only one fault, while
students’ faults can contain several; they would likely
produce different test results and grades. As such, we
build upon our previous work by using students’ solution
programs in place of mutants. Our original investigation
particularly focused on adequacy metrics; estimates of
how effective a test suite is in identifying faults.

2.2. Coverage

Code coverage is a fairly simple and widely used
adequacy metric; it evaluates how many components of
a program are executed when running a test suite [7].
While many types of components can be used to form a
coverage metric (e.g. conditional branches), we explore
line coverage (Cτ) in this study due to its simplicity:

Cτ =
|Cm|
|Lm|

,

where τ = a given test suite, such that τ ⊂ T (where T =
set of all unit tests for the subject class); m = subject
class’s model solution; Cm = model solution’s lines
covered by τ ; and Lm = all lines in the model solution.

We found that coverage had the most significant
impact on generated grades in our previous study. We
also considered repeated coverage with recoverage, Rτ ,
but found that it had the lowest impact on grades.

Rτ =

∑
l∈Cm(|clτ | − 1)

|τ | · |Lm|
,

where clτ = set of tests in τ that cover l.

2.3. Mutation Score

Another means to evaluate adequacy is by executing
a test suite on a series of artificial faults called mutants,
which are generated using a mutation tool such as Pit [8].
The proportion of the mutants that are detected by the test
suite is referred to as the mutation score (Mτ). Higher
mutation scores indicate greater test adequacy; a suite
that detects more mutants should detect more real faults.

Mτ =
|FM
τ |
|M|

,

where FX
τ = set of programs in X detected by τ ; and

M = set of mutants for the subject class.

We previously found that mutation score impacts
generated grades, but to a lesser extent than coverage.

Page 862

2.4. Diagnosability

Test suites can be used to estimate the location of
a fault in a program, using a technique called fault
localization [6]. A suite’s fault localization accuracy—its
ability to distinguish between possible faults—can be
estimated using diagnosability metrics. We consider
three such metrics in addition to the adequacy metrics
that we previously explored; we hypothesise that a suite
that can isolate particular faults generates different grades
than one that cannot. Density (ρτ) measures the lines that
are covered across every test in a suite:

ρτ =

∑t|t∈τ
l|l∈Lm Atl

|τ | · |Lm|
,

where A = an activity matrix (|τ | × |Lm|), Atl denotes
whether line l was executed by test t.

When ρτ = 0, no lines are ever covered; when ρτ =
1, every test covers every line. Gonzalez-Sanchez et
al. [9] show that the optimal density to isolate faults is
ρτ = 0.5. We use normalised density, ρ′τ = 1−|1−2ρτ |,
in this study; ρ′τ = 1 indicates ideal density [6].
Diversity evaluates the probability that two randomly
selected tests differ in their coverage behaviour, measured
by the Gini-Simpson index, Gτ [6, 10].

Gτ = 1−
∑

a∈A |a| · (|a| − 1)

|τ | · (|τ | − 1)
,

where a = set of all tests, t ⊆ τ , that cover the same
lines in m, ∀l ∈ Lm, ∀t, t′ ∈ a: Atl = At′l; and A is the
set of all possible a for τ and Lm.

It is possible for some lines to share the same
coverage for every test in a suite; these lines form
an ambiguity group (g). Having few, large ambiguity
groups poses a potential issue for grading; if the lines
within an ambiguity group implement different parts of a
specification, tests may not be able to distinguish which
aspect a fault is associated with. Uniqueness (Uτ) reveals
how many ambiguity groups are present in the program.

Uτ =
|G|
|Lm|

,

where g = set of lines, l ⊆ Lm, that are covered in
the same way by all tests in τ , ∀t ∈ τ , ∀l, l′ ∈ Lm :
Atl = Atl′ ; and G = set of all possible g for τ and Lm.

3. Research Methodology

3.1. Experiment Procedure

In this empirical study, we use students’
implementations of five Java classes from three
real programming assignments, and a set of unit tests
for each (Section 3.3). Since we require a variety of
test suites to investigate how suites influence grades,

we generate test suites by sampling from this wider set
of unit tests (Section 3.4). For each subject class, we
execute every test on all of the students’ solutions, as
well as a correct model solution.
We store the results of these tests, and use the proportion
of a suite’s tests that pass for a solution to produce a
generated grade (Gsτ) [2]:

Gsτ =
|Psτ |
|τ |

,

where s = the student’s solution under test; Gsτ = grade
generated by τ for s; and Psτ = tests in τ that pass for s.
RQ1 As we aim to investigate how much different test
suites generate different grades, we calculate the standard
deviation of grades generated by our sampled test suites
for each solution. We use this standard deviation instead
of the absolute range of grades since some suites may
only include tests that pass or fail, and would therefore
have a typical grade range of [0%, 100%]. We also
remove any test suites that only generate such extreme
grades for every solution.
RQ2 In order to identify how different properties of
test suites cause this grade variation, we perform a
relative importance analysis on normalised test suite
properties and changes in grades for each suite execution
(Section 3.5). We estimate a change in grades by
computing the grade delta (∆Gsτ); the difference
between the execution’s generated grade and the median
generated grade for every execution of the same solution:

∆Gsτ = |Gsτ − G̃sT|,
where T = set of all test suites for the subject class; and
G̃sT = median grade generated for s by every suite in T.

3.2. Test Suite Properties

In order to address RQ2, we observe various
properties of the sampled test suites, allowing us to
evaluate the impact they have on the generated grades for
each student’s solution. In particular, we use coverage
and mutation score, alongside the three diagnosability
metrics that we discussed in Section 2. In addition, we
include the detection of other students’ solutions:

DS\{s}
τ =

|FS\{s}
τ |
|S\{s}|

,

where S = set of all solutions for the subject class;
D

S\{s}
τ = the proportion of other solutions detected by

τ ; and S\{s} = S, excluding s. While not every solution
contains a fault, the least effective test suite will yield the
minimum value for this metric, and the most effective
will yield the maximum for a given solution.

We also consider the size of a test suite (|τ |)
as a property, for two main reasons. First, the
size of a suite may directly influence grades. For
example, if a large test suite has one failing test suite

Page 863

Table 1. Subject Classes. We only include mutants

that are detected by at least one test, and merge any

mutants with equivalent test traces.

Task Subject
Class

Stdnts.’
Sltns. Muts Tests LoCMan. Evo

Chess Board 45 55 18 14 26
Queen 40 46 9 2 41

Wine Cellar 36 40 16 15 272
Fitness DataLoader 38 19 7 1 71

Questions 38 65 20 30 263

for a solution, it will generate a higher grade than
one with few tests and a single failure. Second, a
suite’s size may influence other properties, such as
coverage and mutation score, as shown by Namin and
Andrews [11]. Since the relative importance analysis
that we employ is robust to correlated variables, by
including |τ | as a property we can effectively control
for its contribution to the other properties. We exclude
the recoverage metric that we used in our original
study [4], since diagnosability metrics also evaluate the
repeated coverage of a program’s lines, and are more
well established in other studies [6, 9].

With the exception of the detection of other students’
solutions, we measure all of the properties using the
model solution, to simulate a tutor developing a new
grading test suite. For metrics that require coverage
information, we use JaCoCo [12] to record the coverage
for every test execution, and store which lines are covered
and uncovered by each test for the model solution. In
order to evaluate the mutation score of a suite, we
generate mutants with Pit [8]. We remove any mutants
that are not detected by any tests, effectively normalising
the mutation score to a range of [0, 1]. We also merge
any mutants with the same behaviour for every test into
a single mutant, such that every remaining mutant passes
for a unique set of tests. This removes a potential source
of bias, since some types and locations of mutants would
otherwise be considerably more prevalent than others.

3.3. Dataset

We use students’ solutions from three end of year
assignments for an introductory undergraduate Java
programming module in this study, as outlined in Table 1.
Each assignment was completed by a different cohort
of students. We conduct our empirical study on five
subject Java classes from these assignments. For each
subject class, we use a series of JUnit tests. Where
available, we use the tutor’s original grading tests for
the assignments. We extend these test sets, to ensure that
every line of code in each model solution that is relevant
to its task’s specification is covered. To do this, we use
EvoSuite, an automatic test generation tool [13]. We also
manually define new tests for each class, with the aim of

maximising the variety of tests. We ensure that every test
is valid by removing any that fail on the model solution.
Table 1 summarises our subject classes, mutants, and test
sets; Man. shows the manually defined tests, while Evo.
shows the tests that we generated using EvoSuite.

3.4. Grading Test Suites

To investigate the possible changes in grades for
our first research question, we designed our test suite
sampler to simulate the iterative development of various
individual test suites. In order to do this, we utilised the
suite growth technique described by Chen et al. [14], in
which a test suite is extended by randomly selecting an
additional test that increases a given criterion, generating
a new suite whenever a test is added. The first test
suite is created by simply randomly selecting any test
from the whole set. Our generator then selects tests that
increase coverage; since a model solution implements
the whole specification of a task, increasing coverage
simulates adding tests that cover more of the specification.
However, some of our subject classes can be fully
covered by few tests, so the generator would quickly
run out of new tests that would further enhance a suite.
As such, once 100% coverage is reached, we change
the generator’s target to the suite’s mutation score, as
this is often a harder criterion to fulfil. This can be
considered as more rigorously exercising a specification,
ensuring that solutions do not include subtle mistakes.
As with the mutation score property, we only use mutants
with unique combinations of passing tests, to avoid bias
from different proportions of similar mutants. Since it
is possible for suites to detect every mutant, we use a
“stacking” approach to continue growing the suite [14,15];
the suite’s current mutation score is reset to zero by the
generator, so every available test that detects any mutants
can be selected. Once there is only one unselected
test, our generator ends the generation run. We halt
the generation here to avoid bias from a large number of
identical suites that contain every available test. Similarly,
we remove the initial suites with only one test each, since
they will introduce a sampling bias by only generating
grades of 0% or 100%. In order to account for the random
element of suite generation, we repeat this process across
100 generation runs, and use all of the resulting test suites
to generate grades for each of the solutions.

In order to investigate the impact of test suite
properties on grades for RQ2, we must use a different
approach, since constructing test suites with the goal to
optimise coverage or mutation score would influence
their impacts on grade delta. As such, we instead
opt to construct test suites by randomly sampling tests
from the pool. For each of 100 generation runs, our

Page 864

random sampler constructed |T| test suites, the number
of available unit tests for a subject class. Our generator
split these |T| test suites equally between several test
suite sizes; 20%, 40%, 60%, and 80%. Our generator
generates each individual test suite by constructing a
pool of the available test suites, and randomly selecting
a test from it, removing the test from the pool in the
process. Once the target number of tests is reached, the
generator compares the constructed suite against other
suites constructed during the same generation run, and
adds it to this wider set if no equivalent suites are present.
This is repeated for the run until the target number of
tests, or an iteration limit of 4|T|, is reached.

3.5. Relative Importance

To evaluate the impact of each test suite property
on generated grades for RQ2, we perform a relative
importance analysis [16] on linear models with the
observed properties as predictor variables, and the grade
delta as the response variable. Relative importance
analysis allows for the impact of a set of predictors
on the response to be compared directly. Specifically,
we use the relative importance measure first proposed
by Lindeman et al. [17, 18]. This approach effectively
calculates the average change in theR2

adj of a linear model
when a predictor is added, by adding the predictors to a
linear model in different orders. This allows the relative
importance of predictors (i.e. test suite properties)
to be compared, even if they have some degree of
correlation to one another, as is often the case for our
properties. For example, test suites that have a higher
coverage tend to have a higher mutation score [11]. This
offers a benefit over simply comparing the magnitudes
of a linear model’s normalised (β) coefficients, which
we used in our original study [4]; β coefficients do
not accurately capture the contributions for correlated
predictors. This measure also provides estimates of the
relative importance in terms of the predictors’ impacts
on the variance of the response variable. This reveals the
proportional impact of the properties on the change in
grades, even if the linear model does not perfectly predict
the change in grades. This also allows us to compare the
impact of each property across different subject classes.
We use bootstrapping to derive a confidence interval for
this analysis, with 2000 runs per subject class and a
confidence interval of 95%

We also calculate the Spearman’s correlations (rs)
between the test suite properties and grade delta. We
do not use these correlations to determine the impact of
the properties, but instead use them to further explain
the impacts of the test suite properties, such as if higher
measurements of a property correspond to increasing

Table 2. Median grades of each solution and their

median standard deviations, across all 30 runs.

Rounded to 1 d.p.

Subject Class Median Grade, g̃ Std. Dev, σg

Board 83.3% 8.7%
Queen 100.0% 9.9%
Cellar 78.9% 13.6%
DataLoader 20.0% 14.2%
Questions 87.8% 3.8%

Mean 74.0% 10.1%

or decreasing the divergence in generated grades. In
addition, we include the β coefficients and p-values of
each property for simple linear models that we derive
with grade delta as the predicted variable, as in the
analysis of our previous study. We use these observations
to identify limitations with our previous analysis.

3.6. Threats to Validity

One potential threat to validity is that sampled test
suites may not necessarily reflect the construction of
real grading test suites. We mitigated this by explicitly
choosing a guided sampling technique for RQ1, as a
test suite that a tutor would write to cover more learning
outcomes should, in principle, increase in coverage and
mutation score as more tests are added. However, for
RQ2 we cannot use this approach, as we are investigating
the impact of several properties, including those which
guide the suites for RQ1. As such, a random sampling
approach is the only viable option for this dataset.

Another possible threat to validity is that some
students’ faults may not be detected by our tests. This
is unlikely to impact our results in a meaningful manner,
however; we manually analysed the faults present in the
students’ solutions and found that the vast majority of
faults cause tests to fail.

For RQ2, we use bootstrapped confidence intervals,
shown by the range bars in Figure 3. Bootstrapped
confidence intervals may not truly reflect their target
confidence level [16], posing a potential threat to validity.
As such, we note that some properties may be more
similar in how they impact students’ grades than they
appear in the data; properties with slightly less high
importance estimates are possibly more important than
those ranked above them. This should not heavily affect
the general trends of relative importance; high or low
estimates still provide a reliable indication of how the
observed properties influence generated grades.

Page 865

Board Queen Cellar DataLoader Questions

0.06
0.75

0.41
0.22

0.31
0.56

0.66
0.18

0.91
0.55

0.36
0.27

0.45
0.73

0.64
0.82

0.06
0.58

0.32
0.19

0.13
0.26

0.45
0.39

0.52
0.25

0.880.5
0.38

0.62
0.75

0.04
0.960.5

0.26
0.14

0.38
0.720.6

0.84
0

25

50

75

100

Proportion of Tests Enabled

G
e
n
e
ra

te
d
 G

ra
d
e
 (

%
)

(a) Generated grades, per solution, per test suite.
Board Queen Cellar DataLoader Questions

0.06
0.75

0.41
0.22

0.31
0.56

0.66
0.18

0.91
0.55

0.36
0.27

0.45
0.73

0.64
0.82

0.06
0.58

0.32
0.19

0.13
0.26

0.45
0.39

0.52
0.25

0.880.5
0.38

0.62
0.75

0.04
0.960.5

0.26
0.14

0.38
0.720.6

0.84
0

10

20

30

Proportion of Tests Enabled

S
td

.
D

e
v
.
G

ra
d
e
s
 P

e
r

S
o
lu

ti
o
n
 (

%
)

(b) Standard deviation of generated grades for each solution.
Figure 2. Generated grade statistics of solutions for each subject class, across all 100 repetitions of suite

generation. For ease of presentation, we removed the outliers.

4. Results

4.1. RQ1: To what extent do different test
suites generate varying grades?

Table 2 shows the median grades and their standard
deviations for all solutions and test suites, and their
means across all subject classes. The mean standard
deviation of grades per solution is 10.1%; different test
suites yield grades that vary drastically for the same
solution program. This is greater than the median
standard deviation that we observed in our previous study
(∼2.6%), likely due to students’ solutions containing
several faults, while generated mutants only each include
one. This may also be due to these subject classes having
fewer tests; smaller test suites induce a greater change in
grades if a single test fails.

Our results also reveal a limitation of our previous
work; it is unreliable to evaluate how much of the possible
change in grades from the median is represented by
the standard deviation. For example, for Queen the
median grade is 100%, and as such the possible change
in grades must be 100%. Considering how we defined the
possible change in grades, if its median grade was 99%,
the possible change would be 1%; this minor difference
in the median grade would produce a greatly different
proportional impact of standard deviation. Instead, it
is better to directly consider the standard deviation in a
solution’s grades alone.

Figure 2 shows the individual generated grades and
grade standard deviations for each solution. We find that
the subject classes have some variation in their behaviour,

such as in the range of standard deviations at each test
suite size, or the median grades. We conjecture that a
programming task itself may affect how suites evaluate
students’ solutions, perhaps because the specification of
how a class should be implemented may influence the
mistakes that students make. For example, in Cellar,
grades generated for some solutions by suites with
26% of the tests enabled have standard deviations of
∼16%, while others have standard deviations of ∼8%.
This solution dependent variation in grades generated
by different suites is a source of potential unfairness;
some solutions’ grades are affected by suites more than
others. Comparatively, this effect is less prevalent for
Board, where most solutions have similar standard
deviations in grades; the influence of the test suites
on their grades is similar between different solutions.
We note that the specification of Cellar is more
complex than that of Board. As such, some students’
solutions may contain more faults for particular aspects
of the program’s specification, and thus would be more
susceptible to differences in test suites than other solution
implementations. However, even for Board, different
suites still generate varying grades for a given solution;
suites themselves have an influence on grades. We
consider how suites influence such behaviours in more
detail in RQ2 and Section 5.

RQ1 Results: Grades generated by different suites
vary considerably, with a standard deviation of∼10.1%
per solution. This standard deviation also varies
between different solutions; the grades of some
solutions are affected by the test suite more than others.

Page 866

4.2. RQ2: Which properties of test suites
impact grades?

Table 3 shows the results of our analysis for RQ2.
This analysis differs from that of our original study in
two key ways. The first difference is that we use a
relative importance analysis instead of comparing the
β coefficients of linear models. This is a more reliable
approach, since the β coefficients of correlated predictors
may not accurately reflect their contributions to the
predicted variable, or one of the correlated predictors
may not make a statistically significant contribution to
a linear model. This can be observed for mutation
score and the detection rate of other solutions in
Cellar; these properties are correlated to one another
(rs = 0.8), and the predictor for mutation score is not
statistically significant (p = 0.64). However, if the
detection rate of other solutions is not included as a
predictor, mutation score’s contribution to the linear
model becomes statistically significant (p ≤ 0.01).
Relative importance does not suffer from this problem,
by virtue of summarising the contribution of a single
predictor across linear models constructed by adding
predictors in every possible order. Accordingly, we
observe that the impact of mutation score is greater than
the detection rate of other solutions for Cellar, and
their impacts are similar overall.

The second change to our original analysis is that we
use grade delta as the response variable of our analysis,
rather than the simple generated grades. By assuming
that the median grade of a solution is a fair grade, the
distance of individual grades to this median represent
their inconsistencies. As such, grade delta provides a
metric of grading consistency, whereas the simple grades
that we used in our previous study only provide an
indication of the proportion of tests that fail for a solution.
Grade deltas do have a limitation, however; if a solution’s
median grade is 0% or 100%, grade delta becomes a
one-sided metric, equivalent to the proportion of tests
that pass or fail for the solution; it becomes equivalent
to our original analysis. This property is not what we
aim to capture in our analysis. This issue occurs for
Queen, where our randomly sampled test suites generate
median grades of 100% for most solutions, similarly to
the test suites that we use in RQ1. This is reflected in
comparatively low relative importance estimates (and
accordingly, R2

adj) for the subject. Similarly, this effect
also affects the correlations of the properties to grade
delta. For other subject classes, the correlations are
typically negative, indicating that suites with higher
measurements of the respective properties produce lower
grade deltas, and as such generate more consistent grades.

However, for Queen these correlations are typically
positive; instead this only reveals that increasing the
values of the properties increases the proportion of tests
that fail for most solutions and test suites. This subject
also affects the mean observations; the mean p-value
of uniqueness’s correlation to grade delta (p̄ = 0.17) is
heavily inflated by its correlation for Queen (p = 0.87).
Excluding Queen from our results shows that the other
correlations for uniqueness are significant (p̄ h 0.00). In
effect, for Queen, grade delta does not truly measure
grading consistency, since it is skewed by such an
extreme median grade. As such, it essentially represents
an outlier in our dataset.

The adjusted R2 of each linear model represents the
grade delta’s variance that is captured by the model.
This is equivalent to the sum of the relative importance
estimates for each property; it represents how much the
combined properties influence grading consistency. This
is shown as a percentage by R2

adj in Table 3; the mean
across all five models is 25.08%; together, the properties
account for 25.08% of the change in grades.

When evaluating the relative importance estimates,
we find that, on average, the detection rate of other
students’ solutions is the most influential property with
respect to a change in a solution’s grades, accounting for
4.86% of the variance in grade delta. This is followed
by the suite’s size, uniqueness, and mutation score;
with impacts of 4.66%, 4.43%, and 4.21% respectively.
Code coverage has a lesser impact on generated grades
(2.74%), followed closely by diversity (2.59%). Finally,
density has the least impact on the change in grades; 1.6%
on average. These results differ considerably to those of
our previous work, where we instead found coverage to
be the most important property with respect to grading
consistency, followed by mutation score, and recoverage
(which is analogous to diversity in this updated study).
Aside from the changes to our experimental procedure,
correlations between coverage and the diagnosability
metrics may be responsible for this difference; part of
the variance explained by diagnosability metrics may
have been subsumed by the sole use of coverage in our
previous study. The properties’ contribution estimates
also vary between the subject classes. For example,
diversity has a very high contribution for DataLoader,
but a very low contribution for the other classes. These
differences are reflected in the contributions of the
complete linear models; the R2

adj for DataLoader is
the highest of all of the subject classes. It is possible
that this divergence in behaviour could be due to aspects
of the subject class itself having an impact on grading
consistency.

As Figure 3 shows, there is some overlap between
the bootstrapped confidence bounds for some of the

Page 867

Table 3. Summary of RQ2 analysis for all 100 random suite generation runs; including relative importance

estimates (Est.), linear model normalised coefficients (β), and mean Spearman’s correlations (rs). Significance

levels of β and rs are reported as: * = p < 0.05; ** = p < 0.01; *** = p < 0.001. p < 0.01 for each linear model.

Subject Class R2
adj Suite Size |τ | Coverage Cτ Mut. ScoreMτ OtherDS\{s}

τ Density ρτ ′ Diversity Gτ Uniqueness Uτ

Board 31.24 Est. 8.7% 3.13% 6.42% 6.54% 1.21% 0.7% 4.55%
β ***-4.82 ***6.11 ***-5 ***-4.69 ***11.25 ***10.05 ***-8.58

Queen 15.62 Est. 1.51% 1% 3.24% 3.95% 4.09% 0.84% 1.01%
β ***-8.26 *5.3 ***-15.62 ***18.58 ***13.38 ***4.21 *-5.82

Cellar 18.96 Est. 4.32% 3.67% 4.01% 2.81% 0.37% 0.06% 3.74%
β ***-7.24 ***-5.99 -0.17 ***-6.83 ***16.47 -0.67 ***7.66

DataLoader 39.68 Est. 4.65% 2.55% 3.18% 7.03% 2.25% 11.27% 8.77%
β ***11.43 ***12.57 ***-16.78 ***-10.4 ***-2.28 ***-41.15 ***-128.78

Questions 19.88 Est. 4.11% 3.38% 4.21% 3.96% 0.09% 0.07% 4.07%
β ***-2.87 ***3.13 ***-6.15 ***-5.79 ***8.14 ***9.02 *-3.83

Mean 25.08 Est. 4.66% 2.74% 4.21% 4.86% 1.6% 2.59% 4.43%
β ***-2.35 ***4.22 -8.74 ***-1.83 ***9.39 -3.71 *-27.87
rs ***-0.3 ***-0.3 ***-0.3 ***-0.25 *0 ***-0.02 -0.27

Board Queen Cellar DataLoader Questions

Cove
rage

Density

Dive
rsity

Mutatio
n Score

Other S
olutio

ns

Suite
 Size

Uniqueness

Cove
rage

Density

Dive
rsity

Mutatio
n Score

Other S
olutio

ns

Suite
 Size

Uniqueness

Cove
rage

Density

Dive
rsity

Mutatio
n Score

Other S
olutio

ns

Suite
 Size

Uniqueness

Cove
rage

Density

Dive
rsity

Mutatio
n Score

Other S
olutio

ns

Suite
 Size

Uniqueness

Cove
rage

Density

Dive
rsity

Mutatio
n Score

Other S
olutio

ns

Suite
 Size

Uniqueness

0.0

2.5

5.0

7.5

10.0

12.5

Test Suite Property

%
 o

f
R

e
s
p
o
n
s
e
 V

a
ri

a
n
c
e

Figure 3. Relative importance of each test suite property, with respect to grade delta. The range bars denote

the upper and lower bounds of a bootstrapped 95% confidence interval.

test suite properties. In these cases, the true order of
relative importance for the properties may be slightly
different, with one of the overlapping properties possibly
outperforming the other. For example this effect can be
observed for mutation score and the detection rate of
other solutions for Board, Queen, and Questions.
In these cases, these two properties should be considered
as having a similar impact on grading consistency, since
despite the overall estimate for one property being higher,
the true order of their importance could be the opposite.

RQ2 Results: Most properties have a statistically
significant impact on grades, especially suite size,
the detection of other solutions, mutation score, and
uniqueness. Suites with a higher measurements of these
properties tend to generate more consistent grades.

5. Discussion

Since our results indicate that different test suites
generate varying grades for the same solution, and that
the properties of these suites influence grading, it would
be beneficial to use our observations to control this effect
as much as possible in grading. In this section, we

offer strategies for tutors to improve the quality and
consistency of their grading test suites. While tutors
could simply write tests based solely on expected input
and output, they may not evaluate solutions fairly. As
such, our suggestions assume that a tutor executes their
tests on a gold-standard model solution, as this ensures
that tests are correct, and allows for the use of metrics to
guide fair test suite design.

Suite Size Since the number of tests in a test suite is
correlated to other properties of the test suite, such as
its coverage or mutation score [11], we include it as a
property for our relative importance analysis, as a means
of controlling for its impact. As such, while a test suite’s
size has a relatively high impact on generated grades,
accounting for∼4.66% of the variance in grade delta, we
cannot provide a specific recommendation for how many
tests a tutor should include in their grading test suite.
Instead, we note that fulfilling our other suggestions will
likely require a tutor to create a series of high quality tests,
the quantity of which will depend on the programming
task that they assess.

Page 868

Coverage Coverage has a moderate impact on grading
consistency compared to the other properties, with a
relative importance estimate of ∼2.74%. As such, while
coverage does impact grading consistency, some other
properties of a test suite have a greater impact.

Coverage has a negative correlation with grade delta,
indicating that test suites with higher coverage produce
grades that are closer to the median for the subject
class; grading is more consistent. This is likely due
to uncovered faults being impossible for a test suite to
detect; covering more lines improves a suite’s ability to
detect faults, and as such generate grades that are not
100%, and closer to the median grade of the solution
across every sampled suite in this study.

Suggestion 1: Tutors should aim to cover every line
of the model solution with their grading test suite.

Mutation Score Mutation score has a fairly high
impact on grades, with a relative importance estimate
of ∼4.21%. In addition, mutation score is negatively
correlated with grade delta; improving a suite’s ability
to detect mutants also results in more consistent grading.
Like coverage, this is likely due to the property’s ability
to predict the adequacy of a test suite; detecting more
mutants will improve a suite’s ability to detect students’
faults, and as such produce more consistent grades. This
impact is greater for mutation score than coverage for
each of the subject classes; it is more important to detect
artificial faults than to cover lines of code in order to
create more consistent test suites.

Suggestion 2: Tutors should use mutation testing
to improve their grading test suites’ abilities to detect
faults, since this can prevent unfairness from some
students’ mistakes being missed.

Detection Rate of Other Students’ Solutions The
detection rate of other students’ solutions has the greatest
impact on grading consistency of any test suite property
on average, accounting for ∼4.86% of the variance in
grade delta. This metric reflects the true adequacy of
a test suite; its ability to detect students’ faults. Since
this metric is negatively correlated to grade delta, we can
conclude that a test suite which detects more students’
faults will produce more consistent grades.

However, this metric may be hard for tutors to use to
improve their test suites. The metric would allow tutors
to understand how many solutions have faults that are
detected, but without manually identifying individual
faults that are present in students’ solutions, but it does
not provide information for unknown faults that are
present in students’ solutions; these can only be identified
and understood by using manual analysis. Comparatively,

artificial mutants serve as known faults; it would be easier
for a tutor to write tests that target undetected, but known
mutants than unobserved students’ faults.

Suggestion 3: If available, tutors can use existing
students’ solutions to inform the design of their grading
test suites, but this could be challenging in practice;
attaining an understanding of every fault in existing
solutions requires manual analysis.

Density Normalised density has the lowest impact on
grading consistency of any test suite property, with a
relative importance estimate of ∼1.6, reflecting its lack
of correlation to grade delta. As such, we can conclude
that the average proportion of lines that each test in a suite
covers has little bearing on the suite’s ability to generate
consistent grades. Instead, other qualities related to
coverage—such as diversity and uniqueness—may be
more important.

Diversity A test suite’s diversity can have an impact
on its grading consistency, representing ∼2.59 of the
variance in grade delta, though this can be attributed
exclusively to DataLoader, where it has the single
greatest estimate of any property for any subject class,
11.27. From this, we can conclude that a test suite’s
diversity typically has almost no impact on grading
consistency, except for in very specific circumstances.
It is possible that this effect is related to how many tests
in a sampled suite behave differently, and how well this
sampled suite represents a typically sampled test suite
(i.e. generate grades that are close to the median for
each solution). For example, if the typical sampled test
suite only contains tests that each have unique coverage
behaviour, then test suites which have multiple tests
with the same behaviour will generate grades that differ
considerably from the median grade. This may be
especially relevant to DataLoader, since it includes
several tests that cover the same code, by virtue of the
specification only defining the use of a single public
method which can be called in a test.

Suggestion 4: Tutors should avoid writing
disproportionately many tests which only exercise the
same aspects of a programming task. If this is necessary,
weights can be assigned to limit the impact that each
similar test has on grading.

Uniqueness Uniqueness has a considerable impact on
grading consistency, with a relative importance estimate
of∼4.43%. It is also negatively correlated to grade delta,
indicating that test suites with more unique tests generate
more consistent grades. Uniqueness likely leads to higher
grading consistency since low uniqueness indicates that

Page 869

some aspects of a programming task are evaluated by
every test, solutions with faults in such aspects may be
overly punished by being more likely to be detected than
solutions with different faults. High uniqueness also
indicates that every aspect of a program is evaluated at
least once; no fault would be completely uncovered by
any test, and as such would be more likely to be detected.

Attaining high uniqueness may pose a challenge for
tutors however, since it is possible for a reference solution
class to only have a single entry point, and as such
this entry point must be evaluated by every test. This
may require some redesign of the task’s specification
and reference solution to avoid this problem, such as
requiring that additional public methods are used. It may
be beneficial for tutors to run an analysis to identify lines
or methods that are executed or missed by every test, such
as by adapting and using Perez’s diagnosability tool [6].

Suggestion 5: Tutors should avoid covering some
lines of their model solution with every test, though
this may require redesigning the programming task.

6. Conclusions & Future Work

In this paper, we have provided empirical evidence
that different test suites generate varying grades for
students’ programs, and that observable properties of
suites can influence these generated grades. Our findings
differ from those our previous study [4]. We attribute
this to both differences in our updated analysis, and
differences between students’ solutions and mutants,
such as the quantity of faults, or their subtlety. We
have also offered strategies for tutors to write fair and
consistent grading test suites: (1) achieve 100% coverage
on a model solution; (2) run tests against mutants to
ensure that they detect faults; (3) analyse students’
faults if possible, to gain an understanding of their
mistakes; (4) avoid tests that cover the exact same lines
unnecessarily; and (5) write tests that each exercise the
program in unique ways.

Our study reveals several avenues for future research.
First, replicating this study with test suites written by
different tutors for the same programming tasks would
be beneficial, since this would reveal how the properties
impact grading consistency for real test suites. Second,
further properties of test suites can be investigated, such
as variants of diagnosability metrics that use mutants as
test goals instead of covered lines; such metrics may be
more relevant since they are grounded in fault detection
rather than coverage. Finally, an automated tool to
evaluate and identify deficiencies in a test suite with
respect to these properties may be useful for tutors aiming
to develop fair and consistent grading test suites.

References

[1] S. Krusche and A. Seitz, “ArTEMiS - An Automatic
Assessment Management System for Interactive
Learning,” in SIGCSE ’18, ACM, 2018.

[2] D. Insa and J. Silva, “Automatic assessment of Java code,”
Comput. Lang. Syst. Struct., vol. 53, 2018.

[3] K. Dewey, P. Conrad, M. Craig, and E. Morozova,
“Evaluating Test Suite Effectiveness and Assessing
Student Code via Constraint Logic Programming,”
ITiCSE 2017, vol. 6, 2017.

[4] B. S. Clegg, P. McMinn, and G. Fraser, “The Influence
of Test Suite Properties on Automated Grading of
Programming Exercises,” in CSEET ’20, IEEE, 2020.

[5] B. S. Clegg, P. McMinn, and G. Fraser, “An Empirical
Study to Determine if Mutants Can Effectively Simulate
Students’ Programming Mistakes to Increase Tutors’
Confidence in Autograding,” in SIGCSE ’21, ACM, 2021.

[6] A. Perez, R. Abreu, and A. Van Deursen, “A
Test-Suite Diagnosability Metric for Spectrum-Based
Fault Localization Approaches,” in ICSE ’17, IEEE, 2017.

[7] Q. Yang, J. J. Li, and D. M. Weiss, “A Survey of
Coverage-Based Testing Tools,” Comput. J., vol. 52, no. 5,
2009.

[8] H. Coles, T. Laurent, C. Henard, M. Papadakis, and
A. Ventresque, “PIT: A practical mutation testing tool
for Java (Demo),” in ISSTA ’16, ACM, 2016.

[9] A. Gonzalez-Sanchez, H. G. Gross, and A. J. Van
Gemund, “Modeling the diagnostic efficiency of
regression test suites,” in ICSTW ’11, 2011.

[10] L. Jost, “Entropy and diversity,” Oikos, vol. 113, no. 2,
2006.

[11] A. S. Namin and J. H. Andrews, “The Influence of Size
and Coverage on Test Suite Effectiveness,” in ISSTA ’09,
ACM, 2009.

[12] M. R. Hoffmann, E. Mandrikov, and M. Friedenhagen,
“JaCoCo.” http://eclemma.org/jacoco/, 2016.

[13] G. Fraser and A. Arcuri, “EvoSuite: Automatic test suite
generation for object-oriented software,” SIGSOFT/FSE

’11, 2011.
[14] Y. T. Chen, A. Tadakamalla, M. D. Ernst, R. Holmes,

G. Fraser, P. Ammann, R. Just, Y. T. Chen, R. Gopinath,
A. Tadakamalla, M. D. Ernst, G. Fraser, P. Ammann,
and R. Just, “Revisiting the Relationship Between Fault
Detection, Test Adequacy Criteria, and Test Set Size,”
ASE ’20, 2020.

[15] M. Harder, J. Mellen, and M. D. Ernst, “Improving test
suites via operational abstraction,” in ICSE ’03, IEEE,
2003.

[16] U. Grömping, “Relative Importance for Linear Regression
in R: The Package relaimpo,” Tech. Rep. 1, 2006.

[17] R. H. Lindeman, P. F. Merenda, and R. Z. Gold,
Introduction to bivariate and multivariate analysis. 1980.

[18] J. W. Johnson and J. M. Lebreton, “History and Use of
Relative Importance Indices in Organizational Research,”
Organ. Res. Methods, vol. 7, no. 3, 2004.

[19] R. J. Lipton and F. G. Sayward, “Hints on test
data selection: Help for the practicing programmer,”
Computer, vol. 11, no. 4, 1978.

[20] A. J. Offutt, “Investigations of the software testing
coupling effect,” ACM Trans. Softw. Eng. Methodol.,
vol. 1, no. 1, 1992.

Page 870

