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Abstract

Growing cohorts of students enrolled in introductory programming courses

reveal a challenge in manual assessment; it is impractical for a tutor to

manually evaluate hundreds or even thousands of programs written by students

in a timely manner. Furthermore, manual assessment is not always fair; tutors

can make mistakes in their assessment. Automated assessment provides a

solution to these problems; a computer can evaluate the correctness and style

of students’ programs, and generate feedback accordingly, in much less time,

and with a high degree of consistency. A particularly widespread approach

to do this is test-based automated assessment, in which a tutor writes a test

suite to evaluate the correctness of students’ programs, which is automatically

executed by a computer to generate a grade and applicable feedback according

to the results of these tests.

Such assessment test suites are not necessarily flawless, however. For example,

a test suite may not detect some faults present in students’ programs; they

may receive inaccurate grades and feedback where their mistakes are missed.

In the software engineering industry, adequacy metrics and test goals are often

employed to ensure that test suites can detect faults; by achieving such test

goals and high adequacy metrics, a test suite should be able to detect faults

more reliably. One approach is to measure coverage; which elements of a

program are executed by a test suite, and which are not. Naturally, a test suite

which exercises more of a program should be more capable of detecting faults.

However, executing a program element does not guarantee that a fault within

it is detected, for example, some faults only manifest for particular states

of the program. Mutation testing offers a different approach to evaluating

xi
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the adequacy of a test suite. Mutation testing involves generating artificial

faulty variants of the program, called mutants, and executing the test suite

on each of them. A test suite which detects more of these mutants should be

more capable of detecting faults. Furthermore, the undetected mutants can

be used to inform the creation of new tests to improve adequacy.

Accordingly, in this thesis I investigate how mutation testing can be used to

improve grading test suites. First, I consider how different test suites can

generate varying grades for students’ solution programs; is there a risk of

inadequate test suites generating unfair grades? I also investigate how different

observable properties, including coverage and the detection of mutants, impact

such changes in grades. Finally, I evaluate how applicable mutation testing is

to improving grading test suites; do the fundamental assumptions of mutation

testing hold for students’ programs, and does improving a test suite’s ability

to detect artificial faults also improve its ability to detect students’ faults?
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Chapter 1

Introduction

With an ever increasing demand for computer science and software engineering

education [6], it has become more important than ever to increase the supply

of education in the field, using teaching resources (particularly the time of

tutors) in as efficient a manner as possible. Alongside demand for traditional

education, the userbase of Massive Open Online Courses (MOOCs) is also

growing, as online education is particularly beneficial for those with the

desire to study part-time, with the goal of changing careers, or improving

their employability [7]. Automated assessment is essential to evaluate the

performance of large numbers of students; it is infeasible to manually grade

thousands of students’ programs [8]. Without the ability to evaluate students’

programs, tutors are limited in their teaching; assessment is important to

provide students with feedback [9] and accreditation [10], and to provide

tutors with the pedagogical knowledge of where students require additional

instruction [11].

While there are multiple approaches to the automated assessment of students’

programs, including verification [12], static analysis [13, 14], clustering [15,

16], and machine learning [17], test-based approaches are perhaps the most

prevalent [18–21]. This involves running an automated test suite on a student’s

program, and generating a grade from the tests’ results, such as the proportion

of tests that pass. Similarly the results of individual tests can be used

1



2 CHAPTER 1. INTRODUCTION

to generate feedback for students, by assigning appropriate messages to

particular test results [22]. Such test suites are unique to the programming

task under assessment, and are therefore typically written by the tutor of a

given programming course.

This test based approach to automated grading is not without its limitations,

however; test suites can vary in quality, with poorer test suites not effectively

detecting students’ faults. Such low quality test suites pose a unique problem

for automated grading; students may not receive appropriate feedback if

their faults are not detected. In addition, students may receive grades that

are too high or low depending on how many tests detect (or fail to detect)

their mistakes, creating a potential source of unfairness. This issue can be

exacerbated if a tutor does not hold the necessary knowledge to construct

effective grading test suites. For example, tutors can lack awareness of

the programming mistakes that students make, and the prevalence of these

mistakes [23]. Fortunately, it is possible that by evaluating the quality of

their grading test suite, a tutor can understand how it should be improved.

This approach is already commonplace in software testing; a variety of test

adequacy metrics aim to directly evaluate a test suite’s quality, and guide a

tester on how it can be improved.

1.1 The Application of Adequacy Metrics in

Test-Based Automated Assessment

A particularly simple test adequacy metric is code coverage, which measures

the proportion of program elements (such as lines of code) that are executed

by a test suite [24]. Any program elements that are not executed by any

test may contain a fault which no test could ever detect; suites that cover

more of the program should detect more potential faults. In the context of

automated assessment, assuming that a tutor has a correct reference program

that perfectly implements a task’s specification, any uncovered program

elements (e.g. lines of code) represent aspects of a task’s specification that
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a test suite cannot evaluate. By using the uncovered lines as test goals, a

tutor has a clear target on where their test suite requires improvement. One

key benefit of coverage is that it introduces little computational overhead

over executing a test suite alone; it can be evaluated in little time, allowing a

tutor to quickly understand how their test suite can be improved. Coverage

is by no means perfect, however; some faults are subtle, and are not detected

by merely being executed [25]. For example, some faults may only manifest

under particular program states. Consequently, achieving full coverage of a

reference program does not guarantee that a test suite can identify any subtle

faults that students introduce.

Fortunately, an alternative approach does address this weakness of coverage;

mutation testing [26]. This involves automatically generating a large number

of faulty variants of a program (such as a reference solution), called mutants.

These mutants are generated using a mutation tool, which implements mu-

tation operators; rules for how a mutant should be generated from an input

program. Mutants directly introduce faults; by detecting every mutant, a test

suite should be capable of also detecting real, even subtle faults. This offers

a clear advantage over coverage, since a test suite must detect these artificial

faults, rather than simply execute parts of a program. Mutation testing relies

on the assumption that mutants are capable of emulating real faults. Existing

work has shown that this assumption holds for real faults in open-source

and commercial software [27, 28], but no work has investigated that this also

holds for students’ faults in their solutions to programming tasks. In this

thesis, I aim to address this, by investigating if such assumptions also hold

for students’ faults, supporting the use of mutation testing to evaluate and

guide the improvement of grading test suites.
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1.2 Goals

I aim to accomplish two primary goals in this thesis:

• To identify how the quality of test suites affects the grades that they

generate.

• To determine the suitability of using mutation testing to evaluate the

quality of a grading test suite.

1.3 Thesis Structure &

Scientific Contributions

Chapter 2: Literature Review

This chapter includes a review of existing work, first providing a summary

of introductory programming education, followed by relevant pedagogical

frameworks. I next consider the assessment of students’ programs, and

approaches to conduct this assessment automatically. Following this, I explore

existing work that examines the mistakes that students make. Next, I review

software testing techniques, code coverage, and mutation testing. I also

consider test generation techniques, fault localisation, and diagnosability

metrics since these may also be relevant to evaluating and improving grading

test suites. Finally, I primarily conclude that there is a clear scope to evaluate

how mutants relate to students’ faults, and how effective mutation testing

is in comparison to code coverage in evaluating grading test suites. I also

conclude that diagnosability metrics may provide some insight into how test

suites can impact generated grades.
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Chapter 3: Datasets

In order to realise the goals of my research, I require students’ solutions to

programming assignments to perform empirical studies on. I collected two

sets of solutions from several cohorts of the introductory Java programming

module at the University of Sheffield. This chapter describes these datasets;

the assignments that they are for, the reference solutions of these assignments,

mutants that I generate using these reference solutions, the students’ solutions

themselves, and the tests that evaluate their correctness.

Chapter 4: Gradeer

This chapter outlines my automated grading tool, Gradeer, which I developed

while conducting my research. I used Gradeer to execute tests on the students’

solutions and mutants within my dataset for my empirical research. Along-

side the lead of the University of Sheffield’s introductory Java programming

module, I successfully deployed Gradeer to grade the module’s assignments,

and to provide students with feedback accordingly.

Contribution 4.1: An open-source modular automated assessment tool

that also enhances manual assessment.

Chapter 5: Investigating the Influence of Test Suite

Properties on Automated Grading

This chapter presents the results of my empirical study on how different

measurable properties of test suites can impact the grades that they generate.

I find that different test suites can yield drastically different grades, and that

various measurable properties have a considerable impact on these grades.

Contribution 5.1: Empirical evidence that different test suites can yield

significantly varying grades for students’ solution programs.
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In particular, I find that the number of tests in a suite, the proportion

of other faulty solutions it detects faults within, its mutation score, and its

uniqueness (a diagnosability metric) have a significant impact on grades. This

supports my hypothesis that using mutation testing can improve test suites,

as by achieving a maximum mutation score, a tutor can reduce the corre-

sponding impact that test suite inadequacy would have on grades; mutation

testing would improve the consistency of automated grading.

Contribution 5.2: A statistical comparison of how various observable

properties of test suites influence the grades that they generate.

Chapter 6: What Programming Mistakes Do Students

Make?

This chapter describes my qualitative analysis of students’ programming

mistakes. I used a coding approach, categorising each new mistake that I

encountered as I manually examined the students’ source code. I present

the frequencies of these mistake categories for each subject class, as well as

descriptions of the categories themselves.

Contribution 6.1: A qualitative analysis of students’ programming

mistakes.
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Chapter 7: Deriving Mutation Operators

From Students’ Mistakes

In this chapter, I consider which mutation operators implemented by existing

tools would simulate the programming mistakes that I identified in the previ-

ous chapter. For the remaining mistake categories, I propose new mutation

operators that would appropriately simulate their addition to a reference

solution.

Contribution 7.1: Definitions of new mutation operators to simulate

students’ programming mistakes.

Chapter 8: MutaGen: Implementing Mutation Opera-

tors

This chapter describes how I implemented my newly derived mutation opera-

tors in my mutation tool, MutaGen. I use abstract syntax tree manipulation

to introduce these complex mutants to a program, since this allows the struc-

ture of the program’s source code to be modified. I also detail the mutants

that MutaGen generates from the reference solutions of my dataset’s subject

classes.

Contribution 8.1: A prototype mutation tool that implements my new

mutation operators.
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Chapter 9: Evaluating the Suitability of Mutation Op-

erators to Simulate Students’ Mistakes

This chapter presents the results of my empirical study to evaluate the per-

formance of artificial mutants to simulate students’ mistakes for the purpose

of evaluating grading test suites. I use a variety of methods to evaluate the

applicability of the coupling effect for mutants and students’ solution pro-

grams; a traditional coupling evaluation, probabilistic coupling, and my new

bidirectional coupling evaluation. I find that mutants are typically coupled

to students’ faulty programs.

Contribution 9.1: Empirical evidence that the coupling effect holds for

mutants and students’ solution programs.

I also perform an analysis of sampled test suites to compare the perfor-

mance of using mutation testing to improve test suites against using coverage,

and to evaluate which types of mutants are the most effective. I find evidence

that simple mutants are the most effective for guiding test suite construction,

but that their use alone does not offer a great benefit over using only a code

coverage metric. However, I also find evidence that using both code coverage

and mutation testing to guide the development of a test suite is especially

effective in improving its ability to detect students’ faults.

Contribution 9.2: An empirical comparison of the effectiveness of code

coverage and mutants generated by different tools in evaluating the adequacy

of a grading test suite.

Chapter 10: Conclusions & Future Work

In this chapter, I summarise the findings of my research. I also use my findings

to consider potential avenues for future research, including possible techniques

to inform tutors of how they can improve the fairness of their grading test

suites.



Chapter 2

Literature Review

2.1 Overview

In this chapter, I consider existing literature that is relevant to the automated

assessment of introductory programming courses, and techniques for improving

test suites which could be applied in this field.

I first consider introductory programming education (Section 2.2). Following

this, I investigate how pedagogical frameworks can inform practices in teaching

introductory programming courses (Section 2.3), then how these frameworks

relate to programming assessments (Section 2.4). Next, I review various

approaches to automated assessment (Section 2.5), with a particular focus on

approaches that use software testing. Following this, I examine the mistakes

made by programming students that automated assessment should reveal

(Section 2.6). Next, with an objective to identify potential means to improve

automated assessment with existing techniques, I review software testing

(Section 2.7), and techniques to improve its effectiveness in revealing faults;

particularly code coverage (Section 2.8), mutation analysis (Section 2.9), and

test generation (Section 2.10). I also consider fault localisation (Section 2.11),

since its techniques provide some insight into improving a test suite’s ability

to isolate individual faults, since this may offer a means to make automated

9
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assessment tests only evaluate individual learning outcomes. Finally, I use

the observations of this literature review to identify an avenue for my research

(Section 2.12).

2.2 Introductory Programming Education

Programming is a required skill in both software engineering and other techni-

cal disciplines, both in formal education and in practice within industry [29].

However, becoming a proficient programmer is notoriously difficult, with

novices facing many challenges on their path [30]. This provides a clear

mandate for effective education in programming; with sufficient guidance,

novice programmers can navigate these challenges.

2.2.1 Novice Programmers

Naturally, students enrolled in introductory programming courses lack the

knowledge and intuition of experienced programmers, who have often honed

their skills over years of practice. Despite this, different novice programmers

exhibit vastly different skill levels [31]. There are several possible causes

for this. For example, some students may have prior experience; Lahtinen

et al. found that 58.8% of students in their study had some experience

in programming prior to attending university, and that 40.6% of these self

reported as having intermediate programming skill [30]. Kanaparan et al.

found a positive correlation between students’ enjoyment in programming

and their skill [32]; such an emotional connection to programming is also a

factor. The personal experiences of Dawson et al. indicate that non-major

students are likely to enjoy programming courses less [33], so a novice’s field

of study may also have an impact on their programming skill.
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2.2.2 Challenges in Learning Programming

It is important for educators to understand the problems that students face

in order to facilitate their improvement [23,34]. However, these challenges are

multifaceted, complex, and even interdependent to some extent; tutors may

find it difficult to fully model students’ problems. For example, Brown et al.

found that students make some programming mistakes at a frequency that

tutors cannot accurately estimate [23]. In addition, tutors and students do not

reach a consensus on how difficult students find some aspects of programming

to learn [30].

Lahtinen et al. conducted a survey of students and tutors to determine which

aspects of introductory programming courses are the most challenging [30].

They found that students find some programming concepts difficult to learn,

particularly recursion, pointers and references, error handling (i.e. exceptions),

standard libraries, and abstract data types. In comparison, students tended to

find variables, conditionals, and loops easier to learn. Their study also revealed

that students found some aspects of writing programs challenging, including

designing a program to solve a particular problem, and splitting a program into

a series of procedures. More significantly than these, however, is that students

reported finding bugs in their programs especially challenging. This notion is

further supported by the work of Lister et al., who found that some students

faced a particular challenge in reading and understanding programs [31].

They postulate that this may be a prerequisite to effectively writing code;

students who cannot understand what the source code of a program means

will naturally struggle to write a similar program themselves. This effect

could be further explained by students having unviable mental models of

programming concepts; their internal understanding of how particular aspects

of programs work is simply incorrect [35]. In order to correct students’ mental

models, tutors must first reveal their flaws, and construct correct models in

their place. This requires tutors to be able to understand this aspect of a

student’s cognition, and to hold knowledge of effective teaching strategies to

guide a student towards a correct mental model. Pedagogical frameworks

offer a means to enable tutors to identify and understand such challenges
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that students face, and to develop effective strategies to assist students in

overcoming these challenges.

2.3 Pedagogical Frameworks

Pedagogical frameworks define particular educational philosophies, providing

tutors with a means to form teaching and assessment strategies [36]. In

this section, I will focus on three particular pedagogical frameworks, two of

which seek to model students’ behaviour, and another which focuses on the

knowledge that a tutor holds.

2.3.1 Bloom’s Taxonomy

Perhaps the most influential pedagogical framework is Bloom’s Taxonomy;

originally intended to enable assessment artefacts to be shared between

American educational institutions, it has since been translated into several

languages, and has seen multiple variants and extensions [37].

The original taxonomy defines a hierarchical model of cognition, split across

six levels of increasing complexity; knowledge, comprehension, application,

analysis, synthesis, and evaluation. These levels are clarified and redefined

in the revised taxonomy of Anderson et al., which renames each hierarchical

group for clarification, and adds a second level of dimensionality to separate

knowledge and cognitive processes, giving broad examples of each dimensional

pairing [38]. Thompson et al. provide a series of examples for each of the

revised model’s cognitive levels, geared towards computer science [39]:

• Knowledge (Remember): Recalling relevant information, such as a

design pattern that has been previously defined and taught in a course.

• Comprehension (Understand): Yielding meaning from a given statement,

for example by converting an algorithm from one form (e.g. pseudocode)
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Table 2.1: The two dimensions of the revised Bloom’s taxonomy, with example
actions for each. (Original source is Oregon State University, but the link is
now defunct; a copy is in Forehand’s work [37].)

K
n
o
w
le

d
g
e

Cognitive Process

Remember Understand Apply Analyse Evaluate Create
Factual List Summarise Classify Order Rank Combine
Conceptual Describe Interpret Experiment Explain Assess Plan
Procedural Tabulate Predict Calculate Differentiate Conclude Compose
Meta-Cognitive Appropriate Use Execute Construct Achieve Action Actualise

to another (e.g. a verbal description).

• Application (Apply): Performing a known procedure, such as applying

a known algorithm to solve a new problem.

• Analysis (Analyse): Decomposing learning material into subcomponents,

then determining their relations to one another. One example of this

would be to split a programming problem into classes and methods.

• Evaluation (Evaluate): Make a judgement based on previously taught

standards. For example, writing a test suite which properly exercises a

solution program to ensure that it is correct according to a specification.

• Synthesis (Create): Combining concepts to produce functionality, such

as formulating a solution to a complex problem using a series of algo-

rithms and design patterns. This level has been swapped with “Evaluate”

to be the highest level in the revised taxonomy. This follows the notion

that independent creation is the ultimate end goal of any educational

journey.

Anderson’s revised model converts the original “knowledge” cognitive level

into its own dimension, and replaces the original level with “remember”, since

knowledge itself takes several forms of complexity [38]. These new knowledge

levels are factual, conceptual, procedural, and meta-cognitive [37]. These

two dimensions can be combined to individual actions, which can be used to

directly formulate learning outcomes, as shown in Table 2.1. In summary,

beginners can remember specific facts; experts have a full understanding of

their cognition, and use it to create from nothing.
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Johnson and Fuller further examined the application of Bloom’s taxonomy in

computer science education via a human study, using 54 first-year computer

science assessments [40]. This study tasked a group of academics with

evaluating which aspects of Bloom’s taxonomy each assessment was focused on.

These evaluations were directly compared to the opinions of a group of lecturers

who delivered each assessment. They found that the beliefs of each group

tended to diverge; the lecturers who presented the assessment intended for it to

focus on one aspect of the taxonomy, but determining which aspect is unclear

from examining the assessment externally. Johnson and Fuller note that this

could be due to a module’s lecturer simply having greater understanding of

the context in which the assessment is applied, or that alternatively there

is a fundamental disagreement as to what each level of the taxonomy really

means. Furthermore, in this study, most of those tasked with evaluating the

assessments had experience with using the taxonomy in other aspects of their

profession, suggesting that it is perhaps more likely for tutors to misunderstand

the true complexity levels of the assessments’ learning outcomes. This may

have severe implications for students’ learning; assessments may not truly

exercise, evaluate, and provide them with experience of relevant learning

outcomes, impeding their learning. In addition, Johnson and Fuller found

that tutors believed that synthesis and evaluation were not relevant to their

modules, instead focusing on application, from a belief that practice is integral

to computer science. Johnson and Fuller propose an additional cognitive

level beyond synthesis and evaluation to remedy this; higher application,

representing a critical approach to application. Pair programming assessments

could perhaps satisfy such an aspect.

Fuller et al. propose a further modification to Bloom’s taxonomy, with the goal

of specifically accommodating computer science [41]. This specifically entails

splitting the cognitive dimension in two: interpreting (remember, understand,

analyse, and evaluate), and producing (apply, and create). This loosens the

hierarchy of the original model, allowing for theoretical foundations to be

paired with practical tasks to support students’ learning. This approach is

particularly beneficial for computer science and introductory programming,

since “learning by doing” is an effective means for students to learn [42–44].
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2.3.2 SOLO

The SOLO taxonomy—the Structure of the Observed Learning Outcome—was

first introduced by Biggs and Collis [45]. Unlike Bloom’s taxonomy, which

provides a structure for what is required for students to achieve a given

learning outcome, SOLO instead focuses on the nature of their response itself.

Bloom’s taxonomy can be used to define assessment material; SOLO assists

with the assessment itself.

SOLO defines several classes for the complexity of students’ responses, for

which Lister et al. provide examples in the context of computer science, based

on a think aloud study of students’ responses to multiple choice questions [46]:

• Prestructural: the student’s response is heavily influenced by miscon-

ceptions, unrelated preconceptions, or a clear lack of knowledge. One

example of this is mistaking an array’s index for its contents.

• Unistructural: the student understands part, but not all, of the problem.

This can be considered as an “educated guess.”

• Multistructural: the student understands every part of the problem, but

not how those parts relate. For example, a student may trace a method,

and come to the correct return value, but not grasp exactly what the

method does.

• Relational: the student is able to combine each part of the problem into

a single whole. Unlike the multistructural response above, a student

would be able to understand what the program is doing. Their final

answer may still be incorrect if they come to the incorrect answer, such

as by skipping over the details after finding a pattern in what a program

is doing.

• Extended abstract: The student’s response goes a level beyond the

problem itself, connecting it to some wider context. For example, the

student makes a comment on the limitations of an example program’s

functionality.
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Lister et al. note that while SOLO is an effective means of understanding

students’ responses, it can be hard to apply it where their thought processes

cannot be examined [46]. For example, in a multiple choice question, the

answers alone do not reveal a student’s understanding. Instead, open response

questions or comments in a program can reveal this understanding. However, it

is important to remember that higher level SOLO responses do not necessarily

guarantee correctness; a student can make a relational response that is still

incorrect.

SOLO has seen a considerable degree of research and application in computer

science education. Sheard et al. performed a study on students’ exam scripts,

by evaluating their answers to questions in terms of the SOLO taxonomy [47].

They found that there is a correlation between students’ SOLO complexity and

exam scores. They also identified a correlation between some questions with

respect to the SOLO levels of students’ responses; for such questions students

were likely to give responses of similar complexity. Izu et al. conducted

a similar study using programming students’ exam responses [48]. Their

results corroborate those of Sheard et al., with positive correlations between

SOLO levels and exam scores. They also use their results to provide real

examples of response levels in programming. Unistructural responses include

not understanding loop semantics, while multistructural responses include the

incorrect use of loop ranges. These results reveal that SOLO can effectively

model students’ understanding of a learning outcome.

SOLO may still have some limitations in computer science. For example, Clear

et al. note that while different assessors evaluate the SOLO levels of responses

with a reasonable degree of consistency, there is still room to improve the

ease of categorisation for assessors [49]. Consequently, they suggest additional

categories to improve this process, with a focus on establishing that a response

is erroneous or omits important details; relational error, multistructural

omission, and multistructural error.
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2.3.3 Pedagogical Content Knowledge

Pedagogical Content Knowledge (PCK) is a framework which considers a

tutor’s knowledge in relation to teaching [50]. Specifically, it not only considers

that tutors must have a thorough understanding of the content, but that tutors

should also hold knowledge of how to teach it effectively [51]. This includes

means of representing the content in an easily understood manner, such as

particularly effective examples, visualisations, or analogies. In addition, it

includes understanding what makes a subject difficult to learn for students;

common pitfalls or mistakes, and how they can be avoided.

PCK has seen some use in computer science education. Buchholz et al.

developed an approach to train university teachers, with a focus on increasing

their pedagogical content knowledge [52]. Similarly, Saeli investigated the

PCK of secondary school programming teachers [53]. This included identifying

some concepts and topics that such teachers widely found students to struggle

with, such as establishing problem solving skills, method parameters, loops,

and arrays.

PCK is extended by TPACK, Technological Pedagogical Content Knowledge,

which includes a component of also understanding available technologies [54].

TPACK combines the applicability of technology to not only the content and

pedagogy independently, but also a combination of the two. Therefore, this

framework would be relevant anywhere that technology can benefit students’

learning, such as automated assessment; the primary focus of my work.

Doukakis et al. conducted a survey of computer science tutors to identify

trends in their TPACK [55]. They found that while computer science tutors

typically have a good grasp of technology, they often require further training on

applying technology in their teaching, with some tutors not using technology

to accommodate students’ learning at all.
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2.3.4 Implications for Learning and Teaching

All three of these frameworks provide some insight into effective teaching

of computer science. Bloom’s taxonomy allows tutors to construct learning

outcomes that target specific knowledge of a topic, while exercising and

employing different aspects of students’ cognition. SOLO provides insight

into how students have engaged with material through assessment, beyond

the simple binary of correct and incorrect. TPACK provides a means to

consider how the knowledge of tutors themselves impacts their abilities to

accommodate students’ learning, specifically with the symbiosis of content

knowledge, pedagogical concepts, and available technologies.

These frameworks can also relate to one another to some extent. For example,

Atun and Usta investigated how TPACK relates to the learning outcomes

achieved by students [56]. They found that applying TPACK to construct

a learning exercise results in improved uptake of learning outcomes, and

improved problem solving. Consequently, if tutors focus on TPACK when

constructing learning materials and assessments, their students will achieve

learning outcomes with higher levels in Bloom’s taxonomy, and provide more

complex SOLO responses.

With such relations in mind, one aspect of learning and teaching in which

each framework can be considered is assessment. Bloom’s taxonomy informs

which concepts assessments should target, informing tutors on how to assess

learning outcomes of different concepts, while guiding students to develop their

cognitive ability. SOLO allows tutors to evaluate how students respond to

these assessments and learning outcomes, and where they may need additional

work, or an adaptation in strategy. Finally, TPACK allows tutors to develop

an effective assessment strategy to maximise this information gain, while also

creating learning opportunities for students.
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2.4 Assessment

In order to evaluate students’ understanding of learning outcomes, they must

be assessed. There is considerable evidence that students respond well to

a “learning by doing” approach to programming [30]. Similarly, a practical

approach to assessment is widely deemed to be effective, with tutors often

employing programming assignments to assess their students [57]. Other

forms of assessment are also effective for gauging students’ grasp of learning

objectives and providing feedback, such as multiple choice questions [31], and

Parson’s problems [58]. These types of assessment can be especially effective

if used in variety with programming assignments [9]. However, these types

of assessment are out of scope for my research, since, in my view, they do

not hold the same breadth of research challenges as practical programming

assignments.

Such a programming assignment can have two primary goals. First, to serve

as a formative learning exercise in itself, by providing students with feedback

and practical experience, effectively increasing their level of understanding, as

modelled by Bloom’s taxonomy and SOLO. Second, to provide a summative

evaluation of each student’s understanding of a set of learning outcomes.

2.4.1 Formative Assessment

Formative assessment is only concerned with directly accommodating stu-

dents’ learning, and has several properties, as described by Grover [9]. The

primary focus of formative assessment is to provide students with high quality

feedback. This feedback can be delivered continuously across different assess-

ments, where tutors first determine students’ understanding, consider how

it can be improved, and present students with the means to improve their

level of understanding. Such feedback is most effective when it provides a

detailed explanation on how to improve, rather than a simple declaration on

the correctness of a solution [59]. There is also evidence that simpler learning

outcomes are better understood by students if they receive this feedback im-



20 CHAPTER 2. LITERATURE REVIEW

mediately, though it is better to provide some delay for complex outcomes [59],

perhaps to allow students time to digest the learning exercise. How feedback

is presented is also important, with one on one dialogue between students

and educators being particularly effective compared to merely disseminating

knowledge with no interaction [60]. Bloom notes that this feedback may be

more effective if it is decoupled from grading students’ abilities [9, 61], but

this does not necessarily mean that feedback should not also be provided in a

graded, summative assessments [10, Chapter 10, p. 185].

Formative assessment also integrates some aspects of pedagogical frameworks

into assessment. For example, students can understand the goals set by

the learning outcomes through the provision of feedback, specifications, or

assessment criteria [9]. Furthermore, tutors can build upon their PCK by

understanding how students engage with the assessment, and by observing the

mistakes that they make. Analysing the SOLO levels of students’ responses—

for example, by examining their source code—may provide a means to develop

this PCK, since it allows tutors to clearly evaluate students’ understanding [11].

This PCK prepares tutors for future assessments, which may have higher

stakes, such as end-of-module summative assessments, or to restructure the

course in future revisions. In addition, a graded assessment can serve as

a formative learning opportunity for students; its requirements can guide

students towards a particular set of learning outcomes, as students tend to

focus on the aspects that have the greatest impact on grades [62].

2.4.2 Summative Assessment

Summative assessment is performed after a set of learning activities, and

aims to quantify what target learning outcomes a student has achieved [10,

Chapter 10, p. 184]. The results of such assessments are used to produce a

final grade for a particular course. By making passing grades compulsory

to attain accreditation, summative assessment can be used to ensure that

students possess a minimum level of technical competence [10, Chapter 10,

p. 197]. In turn, this provides third parties with assurance that students have
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gained the knowledge taught in the course [62].

Pedagogical frameworks also provide some insight into effective summative

assessment. Bloom’s taxonomy can be used to inform the construction of

assessment tasks that focus on particular learning outcomes and cognitive

levels. For example, Shuhidan et al. found that multiple choice questions

tend to only exercise the lower cognitive levels of the taxonomy [11]; perhaps

programming assignments would fulfil the more creative levels. In addition,

the SOLO levels of students’ responses are also often correlated to their

grades [48].

2.4.3 Challenges

Several challenges face educators in delivering assessments with quality feed-

back and fair grading. The first is that tutors must construct an assessment

task, and establish a means of providing feedback based on students’ responses.

This would be significantly hindered if tutors lack the PCK to do this cor-

rectly. This may be a prevalent issue in reality, since educators do not always

have a firm understanding of the mistakes that students make [63], or which

components of a course students find particularly challenging [30]. Another

significant challenge is that manually assessing students’ responses—such as

solution programs—is incredibly time consuming [18,20]. This is especially

problematic, as cohorts of computer science students continue to grow year

after year [6, 64]. One approach to manage this time cost is to elicit the help

of additional educators, such as teaching assistants. However, this manifests

another critical concern; grading inconsistency. Rubrics aim to address this

by providing guidelines to grade solutions based on various qualities, but

these can be interpreted differently by individual educators [65].

It is clear that while assessment is incredibly important for students’ learning,

it is by no means a simple process. However, as the concept of TPACK

suggests, the correct use of available technologies can enhance an educator’s

capabilities, and assessment makes no exception.
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2.5 Automated Assessment

Automation of the assessment process offers a potential solution to many of

the challenges associated with manual assessment, particularly by reducing

the amount of labour required by a tutor [57]. Automated assessment offers a

good return on investment; it only incurs a single time cost in configuring the

automation to assess a programming assignment, regardless of the number of

students, whereas manual assessment will take longer as more students are

assessed [66]. With computer science and software engineering courses growing

ever larger, and the emerging popularity of massive open online courses

(MOOCs) with cohorts of thousands of students, automated assessment is

required not only to save time, but to make assessment feasible at all [64,67,68].

Existing automated assessment systems are able to generate grades [69]

and feedback [70]. Combining these aspects of automated assessment offers

multiple benefits beyond saving time. If applied properly, with limitations

on solution submission frequency, automated assessment can help students

to understand how to improve their solution programs while employing their

own testing [71]. In addition, automated assessment provides an even playing

field between students; automated graders evaluate solutions consistently,

removing the bias that could emerge from assessment by multiple different

human examiners [57,65].

2.5.1 Approaches

There are several different approaches to automated assessment and feedback:

Modelling Approaches

Singh et al. applied modelling to generate feedback for incorrect programming

exercise solutions [67]. Their technique assumes that the complete specification

for the exercise is known (with a correct reference solution), and that potential
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errors for the exercise are predictable. Their technique uses an error model; a

set of pairs of potential errors and associated corrections. The technique then

searches this error model, in order to apply the appropriate corrections for an

erroneous solution; these corrections can be provided to students as feedback.

They found that the technique was able to produce feedback for over 64% of

the incorrect solution programs. Verifix aims to provide similar feedback of

repairs to students’ programs [72]. This tool differs, in that it models correct

reference solutions and a student’s incorrect solution as control flow graphs

(CFGs), and uses a verification process to determine the minimum possible

fix to make the student’s solution equivalent to a reference solution.

Martin and Mitrovic created a constraint-based modelling approach to gener-

ate feedback for students’ SQL database queries [73]. A tutor defines a set of

constraints that students’ queries must satisfy, by defining a series of pattern

matching rules that the queries are exercised against. Should a student’s

solution violate one of these constraints, the student is provided with the

constraint’s associated feedback that the tutor has predefined.

These approaches do have some drawbacks. First, they ideally require a

model specific to each individual programming task, as evidenced by Singh

et al., who found that their approach was considerably less effective in

correcting students’ faults when using a general model compared to task-

specific models [67]. Second, such approaches require particular PCK of the

tutors to create these models. For example, a tutor must be aware of all of the

mistakes that students frequently make to create an error model, or to create

constraints that would identify them. As I have previously discussed, such

knowledge is not necessarily held in an accurate and complete manner [23].

Finally, and perhaps most critically, such approaches require a high level

of TPACK; tutors must not only know how to derive a model to identify

students’ mistakes, but they must also hold the knowledge to represent this

model using a language specific to a modelling tool. For example, Singh

et al.’s approach requires error models to be written in EML (Error Model

Language) [67]. Due to these limitations, I will explore other approaches in

my work.
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Machine Learning & Data-Driven Approaches

Machine learning, clustering, and other data-driven techniques are particularly

en vogue across computer science, and the field of automated assessment is

no exception. One tool which applies machine learning is sk p, which aims

to automatically correct students’ Python programs to provide them with

feedback on how to improve their programs [17, 74]. The tool trains a neural

model on fragments of tokenized solution programs, and uses this model to

predict potential correction fragments for a new solution program for the

same programming task. The tool then evaluates the fitness of the correction

candidates using a set of traditional software tests. After training the model,

sk p can produce corrections in ∼5.6 seconds, which serve as near instant

feedback for students.

Combéfis and Schils use unsupervised clustering to aid the assessment of

large quantities of solution programs [15]. Their technique uses abstract

syntax trees (ASTs) to evaluate the similarity between two solutions. The

technique uses these differences to apply a traditional clustering technique,

yielding a representative solution for each cluster. A tutor can then classify

and provide feedback for each of these representative solutions; this feedback

can be supplied to the students who wrote the solutions in the according

clusters. In addition, if another student submits a new solution that matches

an existing cluster, they can be given the appropriate existing feedback with

no additional effort from a tutor.

These types of approaches present unique challenges in their application.

First, there is a widely considered limitation in understandability for complex

data-driven approaches, such as deep neural networks; it is hard to understand

exactly what a neural model is doing [75]. This makes using such approaches

for grading difficult; there is no means to ensure that students are being

graded fairly, and there is no guarantee that students perform adequately well

to attain accreditation. This does not necessarily prevent such systems from

being applied to generate feedback, but should a machine learning system

generate inaccurate feedback without oversight, students’ learning will be
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hindered; they would be confused as to why they are receiving feedback that

is irrelevant to their solution, and tutors would not know why this erroneous

feedback is generated. Second, these approaches all require large corpora of

students’ solutions; they can only be applied in situations where many students’

solutions are available, such as MOOCs and very large courses. This also

presents a “chicken or the egg” scenario in some cases; existing solutions are

required to provide feedback for new solutions. For established programming

assignments this may be feasible, but supervised machine learning cannot be

used for new programming assignments. Unsupervised approaches, such as

clustering, would still be applicable in such situations, however.

While these data-driven approaches present promising solutions to—and

interesting challenges for—the problems of automated assessment, I consider

them out of scope due to the dataset that is available to me. The students’

solutions that I am able to collect for this work are numerous, and plentiful

enough where automated assessment would provide a clear benefit, but not of

a sufficient quantity for a data-driven approach to be truly effective. Instead,

I consider other approaches.

Dynamic Analysis & Software Testing Approaches

A common approach to automated assessment is to dynamically evaluate

students’ solution programs by running a set of tutor-defined test cases against

them [64,76]. In their simplest form, test cases check that a program (or a

component of it) returns the expected output for a given input. Automated

assessment systems that use this approach have been deployed for decades;

Hollingsworth implemented his assessment tool that checked the output of

punchcard programs in 1960 [77,78].

The approach has since evolved, with modern automated assessment tools

often using conventional software testing frameworks to automatically assess

students’ programs [79]. Some systems also support some specialised features

in programming languages; for example, Insa and Silva’s JavAssess library

uses abstract syntax trees and reflection to manipulate students’ code to
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assess and correct students’ Java programs [18]. Software testing is able to

both grade solutions and provide students with feedback. Grading can be

performed by observing the results of tests, and using the proportion of tests

that pass as a grade [18]. Tests can provide feedback by separating the tests

into public and private sets; the private tests are kept secret and are used to

generate grades, but the public tests are given to the students to execute on

their own machine, allowing them to understand where their programs are

deficient [57]. Furthermore, tutors can use automated assessment tools to run

students’ tests against their own code, and the code of other students [80].

Requiring students to write these tests acts as a learning exercise; students

understand the value of testing their own code [76]. Reusing students’ tests

for other students’ programs could help tutors to save time in assessment.

Modern test-based automated assessment systems are often also deployed as

web applications, or integrated with networked infrastructure [57,64,81,82].

This benefits students, since it provides them with a simple means to both

submit and get timely feedback for their code. Web-based assessment systems

can also benefit tutors, by offering features that save time, and provide

insight into students’ progress. For example, CodeAbility provides tutors

with analytics tools for students’ learning, as well as a system to facilitate the

exchange of learning resources between different tutors and institutions [83].

Such systems can also easily incorporate dynamic analysis techniques other

than software testing. For example, Combéfis and Paques developed Pythia,

a grading system that is inspired by coding competition systems [8]. This

system can impose limits on the memory and execution time of a solution

program. Combéfis and Paques also propose that the complexity of a program

can be evaluated by measuring its execution time for inputs of different sizes.

Cheon and Leavens note that while software testing is effective for improving

the correctness of a program, the process of creating unit tests is both time

consuming and challenging [84]. Similarly, this also applies to test-based

automated grading, with educators requiring the appropriate TPACK to

develop an effective grading test suite. As previously discussed, lacking

knowledge of students’ mistakes produces a challenge [23]; lacking awareness
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of students’ mistakes means that tutors may not write enough suitable tests.

Furthermore, tutors must know how to use the appropriate testing framework

to write their tests. Lacking this TPACK may cause tutors to write a test suite

which does not detect students’ mistakes, or even worse, misclassify correct

solutions as being faulty. An incomplete test suite would not detect mistakes

made by students, potentially reinforcing poor programming practices by

awarding them with high grades. Inaccurate test suites could unfairly recognise

correct solutions as incorrect, confusing and demotivating students.

Despite these issues, I still believe that dynamic analysis and software testing

approaches to automated grading are effective. First, while tutors must hold

the technical knowledge to write tests, software testing frameworks are widely

used in industry [85]; they have an abundance of documentation and learning

material for tutors to use. Second, by requiring that students write their

own tests, automated assessment tools can help students to understand why

testing is important [76, 86, 87]. Finally, the requirement of PCK, such as the

mistakes that students make, is required for effective assessment regardless of

the methodology that is employed. One potential benefit of a software testing

approach is that many techniques have been applied to improve the detection

of faults in industry. In my work, I explore how such techniques can also be

used by tutors to improve their tests for automated assessment.

Static Analysis Approaches

While software testing and other dynamic analysis approaches to automated

assessment are effective in evaluating the correctness and performance of

students’ code, there are some aspects of programming that they cannot

assess, such as code style. Some automated assessment systems augment

their functionality by integrating static analysis [57,79,88,89]. For example,

the Praktomat automated assessment system uses Checkstyle to evaluate

the style of students’ Java code [57, 90]. Checkstyle works by evaluating

a series of rules against a program’s source code. These rules check for

adherence to a programming language’s style guidelines, such as checking
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that a variable’s name is in camel case. The tool reports any rule violations,

which can be used directly as feedback for students. These violations can also

contribute to grade generation. In order to prevent the usage of unfair means,

Praktomat also uses JPlag, a plagiarism and collusion detection system, which

checks for similarities between students’ code [91]. Without the assistance of

static analysis tools, such activities would have to be manually performed by

educators, incurring a huge time cost.

Static analysis still requires appropriate TPACK of tutors, particularly re-

quiring the knowledge of which static analysis rules should be selected in an

assessment. However, this is likely less challenging than writing software tests,

since the rules have already been written and possibly integrated with an

automated assessment tool; selection is much simpler than implementation.

2.6 Students’ Mistakes

In order to effectively assess students’ programs, either automatically or

manually, tutors must first be able to identify the mistakes which they

make [92, Chapter 10, pp. 195-196]. By revealing such mistakes, an assessment

can evaluate gaps in students’ understanding, and consequently, their grasp

of the required learning outcomes [10, Chapter 10, p. 211]. This ultimately

forms a key PCK requirement; tutors must understand the mistakes that

students are likely to make in order to construct an assessment that reveals

them. However, this PCK is not necessarily universally held [23]; tutors

must ensure they hold it, or acquire it. Existing work has explored which

mistakes students commonly makes when completing programming tasks.

Such mistakes either directly impact the functionality of the program, or the

style and quality of its source code.
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2.6.1 Functionality Mistakes

Brown et al. conducted a study investigating the faults that introductory

programming students make in software [23]. This involved analysing the

Blackbox dataset, which consists of the source files of programs collected at

every compilation of consenting introductory programming students using the

BlueJ IDE over a two year period. Since entries in this dataset are collected

at compile time, rather than when a student chooses to submit a completed

program, many of the collected sources include uncompilable code. This may

provide some indication of students’ behaviours and mistakes while they write

programs, rather than implementations that students deem to be correct.

Their analysis targeted 18 fault classes previously identified in interviews with

educators [93], including their frequencies, and the time taken by students to

repair them, as shown in Tables 2.2 & 2.3.

Some of the mistakes identified by Brown et al. were made more frequently

than others. For example, the use of incorrect brackets is particularly com-

mon, perhaps due to students making unintentional typos. Albrecht and

Grabowski attribute such errors to “sloppiness”, and also found that they are

fairly common, accounting for 17% of their students’ incorrect solutions [94].

Another common fault is calling methods with the incorrect argument types ;

students may not remember or understand that they must convert between

types, indicating a failure to grasp this learning outcome, as modelled by

Bloom’s taxonomy. For example, students may use a pure string that contains

a numeric value, rather than parsing it first. By contrast, students are unlikely

to make mistakes of using completely incorrect symbols throughout their

programs, such as using curly brackets around a condition.

Students also appear to find some mistakes easier to fix than others. Simple

syntax errors, such as using the incorrect symbol ordering for comparators,

appear to be particularly easy to fix; they often take less than a minute to fix.

This is likely due to the Java compiler reporting exactly where an unexpected

symbol is, so students can easily identify—then resolve—the problem. Brown

et al. identified three mistake classes that exceeded the repair limit of 1000



30 CHAPTER 2. LITERATURE REVIEW

Table 2.2: Functionality mistakes in students’ Java programs, as identified by
Brown et al. [23] There is a time to fix limit of 1000 seconds for each mistake.

Mistake Description Freq.
Median

Time to Fix
(seconds)

Syntax Issues

Bad Equality
Comparator

Using and assignment (=)
instead of equality comparator (==)

405748 113

Unbalanced or
Incorrect Brackets

Issues with parentheses, including
being unbalanced, mixing types,
or using incorrect types, e.g. (x == 1]

1861627 17

Bad Logical Operator
Using simple logical operators
(| or &) instead of
short-circuit operators (|| or &&)

61965 1000

Unexpected Semicolon
(Conditional)

Semicolon after a condition,
e.g. if (a == b); {...} 108717 387

Unexpected Semicolon
(Method)

Semicolon after a method’s header 86606 50

Bad For Separators
Not using semicolons as separators
in a for statement, e.g. commas

6424 36

Curly Brackets
Around Condition

Using curly brackets instead of
parentheses for an if statement’s
condition, e.g. if { x == 0}

284 24

Reserved Word
Using a reserved word as an
identifier’s name, e.g. int new;

2568 22

No Method
Parentheses

No parenthesises after
a method call, e.g. method;

43165 34

Bad Comparator
Incorrect symbol ordering for a
comparator, e.g. =< instead of <=

9381 13

Types in Arguments
Including arguments’ types when
calling a method, e.g. method(int x);

117295 23

seconds; bad logical operators, string equality, and ignored returns. Since

these mistakes typically exceeded the fix time limit, it is likely that students

often did not repair them at all. However, while these mistakes certainly can

cause major issues in a program’s execution, they do not always result in a

clear fault. For example, a student may be using a compound conditional

statement, with the first clause checking whether an object is null, and the

second evaluating the object’s properties. A correct short circuit logical

operator would prevent the second statement from being evaluated if the

object is null, but an incorrect regular logical operator would evaluate the

second statement, throwing an exception. If the student makes the mistake
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Table 2.3: (Table 2.2 continued.) Functionality mistakes, as identified by
Brown et al. [23]

Mistake Description Freq.
Median

Time to Fix
(seconds)

Type Errors

Incorrect
Argument Type

Calling a method with an
argument of the incorrect type

1034788 59

Incorrect
Return Type

Assigning a variable with a
method of a different return type

32435 71

Other
Semantic Errors

String Equality
Using == instead of .equals()
for string comparisons

274387 1000

Bad Static Call
Calling a non-static method
from a static context

202017 48

Ignored Return Ignoring a method’s return value 274963 1000

Missing Return
A non-void method has a
branch with no return statement

817140 38

Incomplete
Implementer

A class should implement an
interface, but is missing
necessary methods

186643 107

of using the regular operator, it may not always cause a fault; it could be the

case that the object is rarely null, so an obvious error is unlikely to occur for

the student to directly observe. This is the case for all three of these mistakes

that exceed the time budget for repair; they are arguably more related to the

overall quality of a program, and a student’s adherence to good programming

practices.

Some mistakes do not apply universally to all programming languages. For

example, the mistake of using == to check for string equality in Java programs

does not apply to other languages; in JavaScript, one can use the conventional

strict equality operator (===) without any issues. Similarly, errors related

to object-oriented programming do not occur for procedural programming

languages, such as C [94].

Brown et al.’s identified mistakes each fall into one of three broad categories:

syntax errors, caused by using the incorrect syntax; type errors, caused by
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students’ misunderstanding of variables’ types, and other semantic errors [23].

McCall and Kölling also studied the BlackBox dataset; they observed the

mistakes made by students, in order to form a hierarchical categorisation of

students’ mistakes, with 80 individual error categories [95,96]. This hierarchy

forms broader groups of mistakes. For example, the “method call” group

contains individual categories, such as a parameter number mismatch (a

method is called using too few or too many parameters), and parameter types

included (a parameter’s type is included when it is passed to a method call).

Since mistakes can represent a student’s failure to fully grasp a learning

outcome, a tutor can evaluate a student’s understanding of such learning

outcomes by designing tests to detect groups of mistakes that are associated

with them.

2.6.2 Style & Quality Mistakes

Style guides offer a set of rules for writing code, and are often defined by

software vendors or institutions, with a particular focus on consistency between

code written by different programmers [97]. Such style guides provide a means

to ensure the readability and maintainability of software. Similarly, students

should be taught and encouraged to write code that meets a satisfactory

level of readability and maintainability [98]. However, style guides are not

perfect; they can contradict one another, often lack a theoretical or empirical

foundation, and provide different definitions of what programming style truly

refers to [99]. Oman and Cook constructed a general programming style

taxonomy to remedy this, through the examination of style guides and static

analysis tools [99]. Their taxonomy groups style principles into four broad

categories: general practices, e.g. testing and debugging; typographic, e.g.

naming conventions; control structure, e.g. control flow; and information

structure, e.g. data structures. The latter three of these categories are split into

two groups: macro, representing higher level concepts, such as modularisation;

and micro, focusing on specifics, such as rules regarding whitespace. This

taxonomy effectively provides a general approach to good program style. While

individual style guides are effective for specific programming languages, it may
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be worthwhile for tutors to focus on the generalisable aspects presented by this

taxonomy, since students will be able to apply them across any programming

languages that they use in the future.

De Ruvo et al. investigated students’ style mistakes, by examining 19000

students’ code samples [100]. They refer to the mistakes that they identify as

“semantic style” mistakes; mistakes which do not directly impact functionality,

nor outright violate simple style rules (e.g. variable naming). Instead, such

mistakes reveal a lack of understanding of some programming concepts,

manifesting as code snippets that experienced programmers would avoid

writing, such as the mistake in Figure 2.1. Some of their identified mistake

classes include the use of unnecessary if / else-if statements (an if condition

that always evaluates to true), empty if bodies, and useless declarations (a

variable is defined in one statement, and only assigned a value once).

if(a == true)

return true;

else

return false;

Figure 2.1: A semantic style issue, which could be more eloquently written as
return a;, displaying a lack of understanding of boolean types and variable
returns [100].

Keuning et al. also focused on mistakes that impact the quality of a students’

source code, but do not necessarily violate simple style rules [101]. They

conducted a study on the Blackbox dataset, by examining the solutions’ rule

violations that are reported by PMD [102, 103], a static analysis tool. For

each rule, they determined the number of violating solutions, and their time

to fix, similar to the work of Brown et al. [23]. They found that such quality

issues were both common and rarely repaired by students, even if conventional

static analysis tools were provided. As a result, they suggested that tutors

should provide students with automatically generated feedback using static

analysis tools, like PMD, to serve as feedback to correct such mistakes.
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2.6.3 Implications

This existing work reveals that it is imperative for tutors to understand the

diverse programming mistakes that students can make, since they reveal which

learning outcomes students struggle to grasp. Concerningly, the existing work

also reveals that tutors do not always accurately understand which mistakes

students make, and how often [23], posing a challenge; how do tutors ensure

that they can identify students’ mistakes? For style mistakes, static analysis

tools offer a potential solution, but it is not so simple for functionality mistakes;

tutors can use testing approaches to detect students’ faults, but they must

have the sufficient TPACK to write tests that are effective. In my research, I

will consider possible techniques to help tutors to better understand the faults

that students can make, and how to identify them, to ensure that tutors can

deliver accurate automated grading and feedback.

2.7 Unit Testing

Unit testing involves the definition of individual tests to evaluate the cor-

rectness of individual components of a software system, and reveal faults

that are present within them [104]. A unit test executes such a component

with a predefined input. The test then compares the component’s output or

internal state to that of the test’s expected value. These comparisons are

referred to as assertions. If the component’s output or state matches those

defined by a test’s assertions, the test passes, but fails otherwise. Test-based

automated assessment systems use such unit tests to evaluate the correctness

of individual components of students’ programs.

2.7.1 Regression Testing

Regression testing is a technique which aims to improve the effectiveness of

testing in software development, by running a test suite whenever a system
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under test is modified, in order to detect faults that are introduced by new

changes to the program [105]. Since the test suite is executed whenever

a significant change is implemented, every defect that it can potentially

identify is caught, thus improving the correctness of a system while it is under

development. This practice sees considerable use in the software engineering

industry, and is observed to improve software quality. Automated grading

could potentially be represented as regression testing, since a student’s solution

is essentially a set of changes made to a correct and optimal reference solution.

Hence, tests created that pass on a reference solution can be used to validate

potentially faulty solutions that are written by students.

While regularly executing regression tests is known to be time consuming

in software development [106], this issue may not effect grading in the same

manner. This is due to the fact that even if automatic grading does require

a high amount of computational time, it would still reduce the amount of

time required by a tutor to mark assignments manually. Additionally, while

running regression tests may cause a block in software development, a tutor

would not necessarily have to wait for an autograder to finish. Tutors can

make more efficient use of their time and resources to prepare lecture materials,

have direct contact time with students, or complete any other tasks while an

autograder is running. Furthermore, if more throughput of testing is required,

investment can be made into more computational hardware to run automated

assessment tests at a higher speed.

2.7.2 Test Goals & Adequacy Metrics

Since suites of unit tests may vary in their ability to detect faults, it is necessary

to evaluate their quality. However, this is impossible to determine directly,

since real faults are usually not known without being revealed through testing;

a program may contain unknown faults that are not revealed by a deficient

test suite [28]. Instead, test goals provide targets for suites to achieve; by

satisfying more test goals, a test suite should also be more capable of reliably

detecting real faults [24, 27]. The number of test goals that are achieved
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can be used to form a test adequacy metric; a numeric estimation of a test

suite’s fault detection capability. Software engineers use adequacy metrics as

a proxy for real fault detection when developing test suites, without requiring

knowledge of real faults. Similarly, tutors may be able to use test goals and

adequacy metrics to evaluate their automated assessment test suites. By

considering unachieved test goals as analogous to students’ mistakes or failure

to implement some aspects of a task’s specification (i.e. unachieved learning

outcomes), tutors could use test goals to predict their suite’s ability to detect

such mistakes or deficiencies. Several different test goals and adequacy metrics

could be used for such purposes.

2.8 Code Coverage

Code coverage aims to capture test adequacy by evaluating which parts of

a program a test suite has executed [107, 108]. This is performed by using

individual parts of a program’s source code as test goals. These test goals

are achieved once they are executed by a test, or in other words, are covered.

These coverage goals can also be summarised as a single coverage ratio;

the proportion of goals that have been achieved. Coverage can reveal clear

deficiencies in a test suite. For example, consider an empty test suite; it

never executes the program under test, and cannot reveal any faults. If a

test is added to the suite, it will execute more of the program under test,

and now has the possibility to reveal faults that are present in the executed

code. However, some parts of the program may still not be covered by the

suite; faults in these locations cannot be revealed by the suite. Only by fully

covering every location where faults could appear can every potential fault

possibly be revealed.

There are several variants of code coverage [24, 107], as demonstrated in

Figure 2.2, including:

• Statement Coverage (Figures 2.2d & 2.2e): Each individual statement

of a program is used as a coverage goal.
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int abs(int x) {

if(x > 0) { return x; }

return -x;

}

(a) Example method; returns the
absolute values of an integer.

@Test void testPositive() {

assertEquals(2, abs(2));

}

(b) Test suite α.

@Test void testPositive() {

assertEquals(2, abs(2));

}

@Test void testNegative() {

assertEquals(2, abs(-2));

}

(c) Test suite β.

int abs(int x) {

if(x > 0) { return x; }

return -x;

}

(d) Statement coverage; suite α: 67%

int abs(int x) {

if(x > 0) { return x; }

return -x;

}

(e) Statement coverage; suite β: 100%

int abs(int x) {

if(x > 0) { return x; }
return -x;

}

(f) Line coverage; suite α: 50%

int abs(int x) {

if(x > 0) { return x; }
return -x;

}

(g) Line coverage; suite β: 100%

int abs(int x) {

if(x > 0) { return x; }

return -x;

}

(h) Branch coverage; suite α: 50%

int abs(int x) {

if(x > 0) { return x; }

return -x;

}

(i) Branch coverage; suite β: 100%

Figure 2.2: Example test suites and their coverage measurements for a method
which returns the absolute value of an integer.
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• Line Coverage (Figures 2.2f & 2.2g): Each line of a program is used as

a coverage goal. Most lines typically contain a single statement, with

the exception of inline conditionals or initialising multiple variables, so

this is often similar to statement coverage in practice.

• Branch Coverage (Figures 2.2h & 2.2i): Every possible control flow

divergence is used as a coverage goal, such as the true and false outcome

of an if statement. If every branch is covered, then it follows that every

reachable statement is covered, since each statement must be within a

branch, or is executed before a branch has been reached [24].

• Path Coverage: Considering a program as a control flow graph, branch

coverage measures consider the proportion of edges of the graph that are

executed by tests. By contrast, path coverage measures the proportion

of possible combinations of edges that are executed by tests, including

the order in which the edges are explored [109]. This coverage metric is

especially challenging to evaluate, due to the complexity of programs’

control flow graphs, especially where programs use loops. For this

reason, I consider it out of scope for my research, since its complexity

makes it less viable for tutors to use to inform the design of automated

assessment tests.

Code coverage has been shown to be correlated with the improved detection

of real faults [108]. Therefore, coverage should assist tutors in developing

their test suites for automated assessment, since it can reveal the aspects of

a task’s specification which a test suite does not evaluate. Coverage is also

fairly computationally inexpensive to evaluate in comparison to some other

test adequacy metrics [107]; it will not introduce too much of a time cost to

use in the development of grading test suites.

However, achieving high code coverage does not guarantee that all faults

are detected; it is possible to attain 100% coverage without actually testing

for a program’s correctness [25]. This is further corroborated by Zhang and

Mesbah’s investigation of the role of assertions, where they find that both the

number of assertions and the assertion coverage (the proportion of statements
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that are directly covered by assertions) of a suite is strongly correlated to the

suite’s effectiveness [25].

Despite this limitation, I will consider line coverage in my research, primarily

as a baseline adequacy metric to compare other techniques against. This will

allow me to evaluate how well other techniques can help tutors to understand

how their suites reveal students’ faults, in comparison to this simple existing

coverage metric.

2.9 Mutation Analysis & Mutation Testing

An ideal approach to evaluating the adequacy of a test suite is to exercise it

against a set of faults. However, it is impossible to evaluate a test suite’s ability

to detect unknown faults directly. Instead, testers can use artificial faults,

called mutants, to evaluate test adequacy [28]. A tool is used to generate

a set of mutated variants of a program, which each contain one artificially

seeded fault. These faults are created via a set of mutation operators, each of

which serves as a rule to introduce a particular type of fault to a given correct

program. For every location that a mutation operator can be applied to a

target program, a mutant program is produced [110]. Mutation operators

cover a broad range of potential changes, including the replacement of binary

operators and changing scalar values.

Each mutant functions as a test goal, which is achieved if it is killed (i.e.

detected) by any test in a test suite. Mutation testing provides a single test

adequacy metric from the proportion of mutants that are detected by a test

suite, called the mutation score [26]. Mutation analysis extends upon this, a

process that involves evaluating the properties of individual unkilled mutants,

such as their locations, the operator applied, whether they are executed by

tests, or even the exact change that a mutant has made. This information can

be used by a developer to better understand how their test suite is deficient,

and therefore, directly enhance it by creating new tests with the explicit goal

of killing these mutants.
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Mutation testing subsumes code coverage metrics; to detect a mutant, a test

suite must first execute the mutated code, and also make robust assertions

to reveal the change that the mutant has made [107]. Furthermore, several

studies have shown that mutation testing is at least as good as coverage, if

not better, in estimating the effectiveness of a test suite [27, 111]. This effect

is illustrated in Figure 2.3. In this example, there is a simple mutant on the

method’s second return statement (Figure 2.3a). Test suite α (Figure 2.3b)

does not cover the mutant; it cannot reveal it. By contrast, test suite β

(Figure 2.3c) both covers the mutant, and makes an assertion that is able

to detect the fault. Finally, test suites γ and δ (Figures 2.3d and 2.3e) both

achieve 100% coverage, but do not reveal the mutant. Suite γ performs a

valid assertion, but zero is equal to “negative” zero, so the test will pass; the

mutant is not detected. Suite δ does not include an assertion for the faulty

branch; the mutant is executed, but the test never checks the correctness of

the method’s return value.

2.9.1 Core Hypotheses

Since the number of possible faults for any given program is near-infinite,

mutation only focuses on a subset of the possible faults, in an effort to provide

an approximation of the whole set [26]. This approximation relies on two

hypotheses:

Competent Programmer Hypothesis

The Competent Programmer Hypothesis (CPH) dictates that programmers

tend to have a high degree of competence [112]. Therefore, faulty programs

should typically contain only a few simple faults, which can be corrected with

minimal changes to the program. The simple nature of mutants reflects this

behaviour, making single changes to a program [26].

It is possible that the CPH does not hold for programs written by students

enrolled in introductory programming courses, as they are inexperienced
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int abs(int x) {

if(x > 0) { return x; }

- return -x;

+ return x;

}

(a) Example mutation of a method,
displayed with diff notation.

@Test void testPositive() {

assertEquals(2, abs(2));

}

(b) Test suite α; 50% line coverage,
does not detect the mutant.

@Test void testPositive() {

assertEquals(2, abs(2));

}

@Test void testNegative() {

assertEquals(2, abs(-2));

}

(c) Test suite β; 100% line coverage,
detects the mutant.

@Test void testPositive() {

assertEquals(2, abs(2));

}

@Test void testZero() {

assertEquals(0, abs(0));

}

(d) Test suite γ; 100% line coverage,
does not detect the mutant.

@Test void testPositive() {

assertEquals(2, abs(2));

}

@Test void testNoAssert() {

abs(-4);

}

(e) Test suite δ; 100% line coverage,
does not detect the mutant.

Figure 2.3: Example mutation of the method from Figure 2.2, and how
different test suites evaluate it. The mutant is represented in diff notation;
the red line starting with ‘-’ is the original line, which has been replaced with
the green line below it, which begins with ‘+’.
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programmers. These students’ programs may contain many faults; single

mutants would not necessarily simulate their programs’ faultiness. However, it

may be reasonable to model students’ faulty solutions as a series of individual

faults; mutants would still represent such individual faults.

The Coupling Effect

The other core hypothesis of mutation is the coupling effect, which dictates

that if a test suite is sensitive enough to detect simple faults, it must also be

capable of detecting more complex faults [113]. A test suite that kills simple

mutants should therefore detect complex real faults. A real fault is coupled

to a set of mutants if the tests that detect the real fault also kill the mutants.

Just et al. have shown that the majority of real faults from five open source

programs couple to mutants, and that there is a correlation between real fault

detection and mutation score [28].

Since faults introduced by inexperienced students may differ from those

introduced by experienced programmers, it is important to demonstrate that

the coupling effect holds for students’ faults before using mutation to enhance

automated grading techniques. Additionally, if every student’s fault is coupled

to at least one mutant, mutants may still reveal inadequacies in grading test

suites. Accordingly, the CPH may not necessarily need to hold for mutation

to have some benefit to automated grading.

Chen et al. have proposed an alternate coupling measure, called probabilistic

coupling [27], which derives an estimated probability, p, that a real fault, f ,

is detected given that a test goal, gi, is satisfied (e.g. a mutant is detected),

or p = P(detect f | gi is achieved). Probabilistic coupling offers some insight

into how well a mutant captures a test suite’s adequacy in revealing a real

fault. Using the maximum probability for a set of test goals for the real

fault allows this insight to be gained without knowledge of every possible real

fault, and without an impact from irrelevant test goals (e.g. mutants that are

not covered by a test). While conventional coupling shows that a test suite

that detects real faults also detects mutants, probabilistic coupling essentially
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reveals the inverse; the detection of mutants is associated with the detection

of a real fault. In the context of automated grading, probabilistic coupling

would reveal that a test suite that can detect mutants also identifies students’

faults, and can therefore help to provide sufficient feedback, and grades that

are not too lenient.

Potential Weaknesses

Gopinath et al. conducted a study to determine the reliability of the CPH,

using real faults collected from projects hosted on Github that were written in

Java, C, Python, or Haskell [114]. They found that real faults typically modify

three to four tokens, introducing doubt to the CPH, which suggests that bugs

introduced by competent programmers should only modify one token. This

is perhaps supported by Just et al., who found that some real faults are not

coupled to mutants, particularly those that are due to algorithmic errors [28],

which may affect multiple tokens. However, Gopinath et al. also note that

these hypotheses do not necessarily have to hold in order for mutation testing

to be an effective means of evaluating test adequacy. Instead, it is better to

determine if test suites that kill mutants are also able to detect real faults in

realistic testing scenarios.

2.9.2 Effectiveness

Existing work has evaluated the effectiveness of mutation testing for evaluating

test suites’ adequacy. However, the results of various studies using different

techniques have often produced drastically different outcomes [27].

Andrews et al. conducted one of the earliest comparisons between mutants

and real faults [115]. In their study, they compared the detection rates of

mutants to those of known faults in eight C programs, using 5000 test suites

that were constructed by randomly sampling individual tests. However, their

study is limited by their subject programs; only one of the eight subjects

includes real faults, with the remaining seven only including manually seeded
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faults. For the subject with real faults, Andrews et al. found that the

proportion of killed mutants was analogous to the proportion of real faults

detected. They also found that mutants are harder to detect than real faults,

providing supporting evidence for the coupling effect. For manually seeded

faults, they found that mutants differ significantly, and that mutants are

easier to detect than such faults. Namin et al. repeated this study using a

different mutation tool, Proteum [116], and only found a weak correlation

between mutation score and real fault detection for the subject with real

faults [117]. They also found that other elements can have an impact on test

adequacy studies, such as the mutation operators used, the number of tests

in each suite, and the language that subject programs are implemented in.

For example, it is much less likely for a developer to introduce a memory

leak in a language with a garbage collector, such as Java, than a language

where memory must be managed manually, such as C. Mutation operators

that disturb memory management, such as those proposed by Wu et al. [118],

would not necessarily be relevant to a language like Java.

Just et al. also evaluated the use of mutants to simulate real faults with

respect to software testing, using real faults and test suites from five open

source Java programs [28]. In their study, they find that the majority

(73%) of real faults are coupled to mutants, and that there is a positive

correlation between mutation score and the detection rate of real faults. For

some of the uncoupled real faults, it would be possible to implement new

or enhanced mutation operators to create mutants that they couple to. For

example, some faulty programs fail to call a transforming method where

necessary, such as a method that sanitises strings. This could be simulated

by a mutant that replaces a method call with its parameter. However, for

the majority of real faults, it would be extremely difficult or impossible

to create a mutation operator that allows them to be coupled, due to the

requirement of context-specific knowledge. Such uncoupled real faults include

incorrect algorithms, the inclusion of additional incorrect code, and invariant

violations. Just et al. also investigated how the effectiveness of mutation

testing’s adequacy evaluation compares to that of code coverage. Their

analysis involved comparing the correlations of mutation score and statement
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coverage to the real fault detection rate. They found that the correlations

for mutation score are positive, and typically slightly higher than those of

statement coverage. They also found that a positive correlation for mutation

score remains even if the test suites’ coverage is controlled. These results

indicate that mutation testing can be a more effective measure of test adequacy

than code coverage.

Papadakis et al. conducted another study to evaluate the correlation between

mutation scores and the detection of real faults, using two datasets consisting

of Java and C programs, respectively [119]. Their results identify a positive

correlation between mutation score and the real fault detection rate, corrob-

orating those of Just et al. However, they also found that when the size of

each test suite is controlled there is only a weak correlation. This suggests

that the size of a test suite has a significant impact on the real fault detection

rate; suites with more tests kill more mutants and detect more real faults.

Chen et al. note that the results of these existing studies often contradict

one another, and suggest that this is due to the differences, and deficiencies,

in their methodologies [27]. One of their critiques is that it is unrealistic

to evaluate test adequacy with test suites that are generated by randomly

sampling a target number of tests from a wider set of existing tests. Instead

developers would write tests targeting a particular bug or new feature, or

to increase an adequacy metric, such as by increasing code coverage. In

addition, not all tests are created equal; they may exercise parts of a program

completely distinct from a real fault, use different numbers of assertions, or

simply be ineffective at identifying faults. They consider that it may be

preferable to construct suites by using a realistic test selection process, such

as those employed by the search algorithms of automated test generators.

Chen et al. also reason that the existing work may include some statistical

analysis issues that arise due to the use of correlations. One of the problems

that a correlation analysis presents is that explanatory variables, such as

mutation score and test suite size (e.g. Papadakis et al. [119]), may be highly

correlated to one another. In such an event, it is impossible to conclude which

of the variables causes a relation from the correlation alone. Controlling one
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of the variables, for example suite size, would also cause the correlation for

the other variable alone to be weaker. Instead, Chen et al. suggest that it is

preferable to determine the impact of each variable, such as by performing

multiple linear regression and comparing the coefficients of the explanatory

variables, or by performing an analysis that explicitly handles correlated

variables, such as by examining how adequacy metrics improve a model’s

predictive power after the size of a test suite has already been accounted for.

In addition, Chen et al. suggest that the use of point biserial correlation

to determine the relationship between mutation score and a real fault being

detected or undetected (e.g. Just et al. [28]) is flawed. This is due to the

maximum correlation being dependent on the probability that the real fault

is detected; the maximum possible correlation is 0.8, and depending on the

detection probability this may be even lower. If the results of such correlations

are interpreted by the same guidelines as conventional correlations, with 1.0

indicating a perfect positive correlation, the relationship may be underesti-

mated; two truly perfectly correlated variables would be assumed to not be

perfectly correlated. This effect means that where detection probabilities

are extremely low or high, the correlation will be severely underestimated.

Another problem that they identified for correlation analysis is that if a

random test selection process is used, the resulting correlation is heavily

influenced by the probability that a randomly constructed test suite contains

a test that detects a real fault. This probability is itself influenced by the

proportion of such fault revealing tests in the complete test set.

Considering the limitations of the existing studies, Chen et al. suggest an

alternate approach to evaluating the effectiveness of mutation testing, while

taking the size of a test suite into account. This approach involves growing

test suites according to one of the adequacy criteria being evaluated. Given a

target adequacy criterion, at, (e.g. mutation score), a test suite is grown by

randomly selecting an additional test that increases at. As the suite is grown,

the suite size, real fault detection probability, and adequacy (at) is measured

and recorded. Once at is fully satisfied, the growth process for the suite is

halted. This can be repeated using different adequacy criteria for at, allowing
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for the different adequacy criteria to be compared directly, with respect to

suite size. Due to the use of random selection, multiple suites for each target

criterion should be generated to improve validity. In addition, fully random

test selection can be used to provide a baseline to compare each adequacy

criterion against.

There is a challenge in comparing a fully satisfied adequacy criterion against

an unsatisfied one, however. For example, a test suite using coverage selection

may achieve full coverage after 15 tests, but a suite using mutation selection

of the same size may only kill half of the mutants. To handle such situations,

Chen et al. suggest two strategies to continue growing a suite after its selection

process reaches full adequacy. One of these strategies is to “stack” the test

suite, by resetting the target adequacy criterion to zero while retaining the

tests, and to continue the growth process with the remaining unselected

tests, with the goal of increasing the same target criterion. This is effectively

equivalent to appending an additional test suite that is constructed using the

same selection process. For example, if a test suite achieved 100% coverage,

the stacking growth process would effectively recover coverage goals that

were already achieved. The other strategy is to change the target adequacy

criterion once the original criterion is satisfied. For example, a suite that

has achieved full coverage could continue to be grown by selecting tests that

increase its mutation score. If such a suite continues to improve the fault

detection probability, it would demonstrate that mutation testing can reveal

additional test inadequacy for a program even after a test suite achieves full

code coverage.

Chen et al. used their approach to compare the adequacy estimation effec-

tiveness of mutation testing and code coverage, using real faults from the

Defects4J [28] dataset of Java programs. They found that suites constructed

by selecting tests based on coverage reveal more real faults than those that

were guided by mutation score, until full coverage was obtained. However,

they also identified that it was possible to continue growing suites beyond

this size, and that the larger test suites would reveal more real faults. In

particular, they found that continuing to grow suites that achieve full coverage
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by changing the adequacy criterion to mutation score was the most effective

approach; mutants reveal test suite inadequacy even after full coverage is

achieved.

2.9.3 Equivalent Mutants

It is possible for a mutant to be functionally indistinguishable from the

original, correct program, where no possible test suite would be able to

differentiate between the two [120,121]. Such mutants are called equivalent

mutants, and present a unique challenge to mutation testing; a set of mutants

that contains equivalent mutants would present an underestimate of adequacy,

and executing these useless mutants would needlessly increase computation

time. In addition, equivalent mutants impact mutation analysis, as a test

developer would expend effort to determine if a mutant is equivalent or not.

Similarly, tutors using mutation analysis to develop automated assessment

test suites would also have to spend time to manually determine if undetected

mutants are indeed equivalent. Fortunately, the severity of this issue can

be limited, via the use of various techniques to identify and remove these

equivalent mutants [120–130].

2.9.4 Mutation Tools

Artificial mutants are generated using programs called mutation tools. These

tools generate each mutant by applying a mutation operator to a source

program. Each of a tool’s mutation operators can be applied several times

to different locations of the program, generating a variety of mutants. Early

mutation tools were focused on Fortran [131–133], with focus later shifting to

Ada [134], C [110], and Java [135–137].

Modern mutation tools are available for a variety of popular programming

languages and application domains [138–141]. Since my dataset only includes

students’ solutions to Java programming assignments, I will primarily discuss
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Table 2.4: Mutation operators implemented by Major [142,143].

Operator Description Example

Arithmetic Operator Replacement Replace an arithmetic operator x + y → x * y

Logical Operator Replacement Replace a logical operator x ^ y → x | y

Conditional Operator Replacement Replace a conditional operator x && y → x || y

Relational Operator Replacement Replace a relational operator x < y → x >= y

Shift Operator Replacement Replace a bitwise shift operator x << y → x >> y

Operator Replacement Unary Replace a unary operator -x → ++x

Expression Value Replacement Replace an expression with a default value x = y → x = 1

Literal Value Replacement Replace a literal value with a default "Word" → ""

Statement Deletion Delete a statement (e.g. return, break, method call, etc.) put(k) →

Java mutation tools. Major is one such Java mutation tool, introduced

by Just [142]. Major implements nine mutation operators, as shown in

Table 2.4 [142, 143]. These operators are used to generate mutants using

a modified Java compiler. This approach offers two main advantages over

directly manipulating source code.

• Uncompilable mutants can be avoided; the compiler has contextual

information that a simple text manipulator would lack.

• Individual mutants do not need to be compiled; the compilation process

is only executed on the original source file, and generates every possible

mutant in this execution.

Just evaluated Major’s generation overhead by generating mutants for 12

open source Java projects, and comparing the projects’ compile times with

the Major compiler, which generates and compiles the original program and

mutants, against those for the traditional Java compiler [142]. They found

that Major generated a total of 539,966 mutants in 222 seconds. The same

projects took 149 seconds to compile with the conventional Java compiler;

Major has an overhead of only ∼49% to generate this large quantity of

mutants.

Pit is another modern Java mutation tool [146, 147]. Pit implements 29

mutation operators in total, though only 11 are enabled by default [144].

Table 2.5 shows Pit’s default operators, and Table 2.6 shows its extra, non-

default operators. Some of the operators are not enabled by default because

they are more prone to generating equivalent mutants, while others are

effectively deprecated; they were reimplemented by some the default operators.
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Table 2.5: Default mutation operators implemented by Pit [144].

Operator Description Example

Conditionals Boundary Replace a relational operator, but only by its boundary. x <= y → x < y

Increments Inverse increments and decrements. x++ → x--

Invert Negatives Remove negation operators. -x → x

Math Replace an arithmetic operator with a predefined alternative. x % y → x * y

Negate Conditionals Inverse a conditional operator. x <= y → x > y

Void Method Calls Remove a call to a method without a return type. run() →

Empty Returns Replace return values with an empty default. return 5 → return 0

False Returns Replace boolean returns with false. return x → return false

True Returns Replace boolean returns with true. return x → return true

Null Returns Replace return values with null. return x → return null

Primitive Returns Replace primitive returns with 0. return x → return 0

Unlike Major, Pit directly mutates existing bytecode. This alternative ap-

proach is often simpler and faster, but has one significant limitation over

Major’s compile time approach; compiled bytecode lacks the source code’s

syntactic sugar, it is replaced with semantically equivalent lower level instruc-

tions for the Java virtual machine. For example, an enhanced for loop over

an array’s elements would be replaced with a traditional in for loop over the

array’s indices in the compiled bytecode. This limitation has two implications

for mutation:

• Mutants that would be impossible to add to the original source code

can be generated. In the example of enhanced for loops, where at-

tempting to read data outside of the array is impossible, a byte-

code mutant may modify the bounds of the for loop, resulting in an

ArrayOutOfBoundsException.

• Generated mutants cannot be directly converted back to easily readable

source code; it is more difficult to interpret the change that a mutant

has made, so performing mutation analysis is more challenging. By

contrast, Major enables the generation of such mutated source files.

Since Pit does not output mutated source code, it instead provides the user

with a report in the form of a HTML page, which displays the original source

code with annotations of the mutants’ operators applied to each line of code.
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Table 2.6: Additional (non-default) mutation operators implemented by
Pit [144].

Operator Description

Return Values Replace a return value with a default. Deprecated by individual return operators.

Remove Conditionals Remove a conditional (e.g. from an if statement), so that a block will always be executed
(e.g. if (x) ... → if (true) ...).

Experimental
Switch

Swap the first case of a switch statement with the default case.

Inline Constant Replace literal values with a default, or increment some numeric values
(e.g. boolean a = true; → boolean a = false;).

Constructor Calls Replace object constructor calls with null.

Non Void Method Calls Replace a method call that has a return value with a default value of the same type
(e.g. int a = sum(b, c); → int a = 0;).

Remove Increments Remove increment operators.

Experimental Argument
Propagation

Replace a method call with one of its parameters that has the same type
(e.g. int a = sum(b, c); → int a = b;).

Experimental
Big Integer

Replace methods of BigInteger objects.

Experimental
Member Variable

Remove assignments to member variables.
Initial values are replaced with defaults appropriate to their types.

Experimental
Naked Receiver

Replace a method call with the object that the method is called on
(e.g. s = s.trim(); → s = s;) [145].

Negation Negate any numeric variable (e.g. sum(a, b); → sum(-a, b);).

Arithmetic Operator
Replacement

Replace an arithmetic operator. Effectively deprecated by the Math operator.

Arithmetic Operator
Deletion

Replace an arithmetic operation with one of its two values
(e.g. a = b + c → a = b).

Constant Replacement Replace a numeric inline constant; similar to the Inline Constant operator.

Bitwise Operator Replace a bitwise operator (e.g. &) with its
alternative (e.g. |) or one of the values in the operation.

Relational Operator
Replacement

Replace a relational operator with one of its alternatives (e.g. > → ==).

Unary Operator
Insertion

Add a unary operator to a variable reference (e.g. a → a++).

Both mutation tools also feature integrated mutant analysers, which execute

the user’s test suite on the generated mutants, allowing the tool to directly

evaluate the adequacy of test suites. Major’s analyser uses several optimisa-

tions to minimise otherwise lengthy mutant execution times [142]. The first is

to pre-process mutants by performing weak mutation analysis; to determine

which mutants cause state infection when executed by a test. A mutant

achieves state infection if its state differs from that of the original program

after the mutated statement is executed. Consequently, mutants that are not

covered by any tests will not achieve state infection, nor will those that are

equivalent. This weak mutation analysis only requires a single execution of

the test suite, and therefore adds little overhead (∼57.5%) over simply testing

the original program alone. Only mutants that achieve state infection are

used for further strong mutation analysis, in which tests are executed directly
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on mutants. This strong mutation analysis has its own optimisations:

• Mutants are not re-tested after they are killed by a test.

• Major uses test suite prioritisation by runtime; tests that take less time

to run are executed first, with the aim to kill mutants sooner.

These optimisations do significantly improve Major’s execution time; in Just’s

experiment, running all 14 programs’ test suites (one project included three

programs) on the original code took 1080 seconds (∼77 seconds/program).

In comparison, executing all 539,966 mutants took a total of 1828 minutes

(∼0.2 seconds/mutant); avoiding the unnecessary execution of some mutants

significantly reduces the average execution time.

The results of Major’s strong mutation analysis are reported to the user,

including the number of generated, covered, state-infecting, and killed mutants,

alongside the reason for a mutant being killed, such as an assertion violation,

exception, or timeout (perhaps due to a mutant introducing an endless loop).

Similarly, Pit’s HTML report includes the mutants that are killed, and the

reason why they are killed, directly annotated in its source code view. These

reports inform the user of specific test deficiencies; Major lists the unkilled

mutants, and Pit includes unkilled mutants in its annotations. These reported

unkilled mutants can be manually inspected by the user, to better understand

why the mutants are not killed by any tests, and improve the test suite

accordingly. Similarly, a tutor could use mutants to understand how they

should enhance their automated assessment test suites.

Pit is also designed to be easily integrated with Java projects, with direct

support for Java build systems such as Maven and Gradle; users can generate

and analyse mutants with a single command, or automate the process entirely

with continuous integration. Such a feature could be of benefit for software

testing tasks in MOOCs; new or updated tasks would only be provided to

students if their test suites pass and kill every generated mutant.
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2.9.5 Higher Order Mutants

Higher order mutants (HOMs), first introduced by Jia & Harman, combine

the changes from multiple first-order mutants (FOMs), i.e. single statement

mutants, into one mutant [148]. It is also possible to generate HOMs that

are subsuming; the test cases that kill a subsuming HOM also kill every

FOM that it is generated from. Consequently, using HOMs also allows for

the execution time of mutation testing and analysis to be reduced, since if a

subsuming HOM is killed, each of its constituent FOMs are as well; only one

execution of a test suite is required, instead of multiple. Furthermore, some

subsuming HOMs may not be killed by a test set which kills every constituent

FOM; such HOMs are strongly subsuming. These strongly subsuming HOMs

are more subtle than their constituent FOMs, presenting a stronger measure

of adequacy. Figures 2.4 & 2.5 demonstrate how a strongly subsuming HOM

is more subtle than its constituent FOMs.

Jia & Harman found that a genetic algorithm was the best approach to gener-

ate subsuming HOMs, and that many subsuming HOMs could be generated

from 10 subject programs [148]. They also found that a search based approach

could generate strongly subsuming HOMs for each subject program. Omar et

al. have also shown that local search based techniques can generate strongly

subsuming HOMs [149]. Nguyen & Pham found that around 50% of generated

HOMs are harder to kill than their constituent HOMs [150].

HOMs could provide a means to resolve the issue of students’ solution pro-

grams breaking the Competent Programmer Hypothesis; generated HOMs

may be more analogous to students’ programs that contain multiple faults.

2.9.6 Existing Applications in Automated Assessment

Mutation testing and analysis has seen some application in Computer Science

education, particularly in the education of software testing.

Several studies have investigated the use of mutation testing and analysis to
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Triangle getType(int a, int b, int c) {

int t = 0;

if (a <= 0 || b <= 0 || c <= 0)

return INVALID;

if (a == b) { t = t + 1; }

if (a == c) { t = t + 2; }

if (b == c) { t = t + 3; }

if (t == 0) {

if ((a + b < c) || (a + c < b) || (b + c < a))

return INVALID;

return SCALENE;

}

if (t > 3)

return EQUILATERAL;

if ((t == 1) && (a + b > c))

return ISOSCELES;

if ((t == 2) && (a + c > b))

return ISOSCELES;

if ((t == 3) && (b + c > a))

return ISOSCELES;

return INVALID;

}

Figure 2.4: Correct implementation of a method to determine the type
of a triangle, given the length of its sides. Adapted from Jia & Harman’s
work [148].

assess students’ software tests, with varying results. Aaltonen et al. found

that mutation analysis allows for students’ tests to be evaluated, irrespective

of the students’ original programs, even if they implement behaviour that is

not in an assignment’s specification [151]. This would allow for testing in more

open ended creative assignments to be assessed. They also note that mutants

may be able to provide students with feedback on their tests’ inadequacies.

However, Shams et al. warn against using students’ solutions to generate

mutants, since a student’s solution may already be incorrect, and a mutant

may actually fix the program [152]. Furthermore, the study conducted by
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- if ((t == 1) && (a + b > c))

+ if ((t > 1) && (a + b > c))

(a) A first-order mutant, FOM-a, represented in
diff notation.

- if ((t == 1) && (a + b > c))

+ if ((t == 1) && (a + b <= c))

(b) Another first-order mutant, FOM-b,
represented in diff notation.

- if ((t == 1) && (a + b > c))

+ if ((t > 1) && (a + b <= c))

(c) A strongly subsuming higher-order mutant,
produced by combining FOM-a and FOM-b.

Represented in diff notation.

assertEquals(INVALID,

getType(1, 3, 1));

assertEquals(INVALID,

getType(1, 1, 3));

(d) Test assertions that, when
combined, reveal the first-order
mutants, but not the strongly

subsuming higher-order mutant.

assertEquals(ISOSCELES,

getType(2, 2, 3));

(e) Test assertion that reveals the
first-order mutants and the strongly

subsuming higher-order mutant.

Figure 2.5: Example of how a strongly subsuming HOM can be created
from two FOMs for the method in Figure 2.4. This also illustrates how tests
can reveal FOMs, but not the strongly subsuming HOM that is created by
combining them. Adapted from Jia & Harman’s work [148].
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Edwards et al. indicates that mutation scores are not significantly correlated

with the fault detection capabilities of students’ tests [153]. It is possible

that the efficacy of using mutation testing and analysis to evaluate students’

tests is influenced by other factors, perhaps such as the assignment itself.

These studies also identify additional weaknesses in using mutants to assess

students’ tests. Aaltonen et al. note that coverage metrics may be easier

to understand, and that more complex programs would have more mutants

generated for them, with different programs having different distributions

of mutants, creating a potential source of unfairness. Shams et al. note

that students’ tests may also fail to run against a model solution, and by

extension, any mutants generated from it. They also note that mutation

analysis may induce an additional manual cost in grading, due to equivalent

mutants (defined in Section 2.9.3), which have the same behaviour as the

model solution program. Such mutants would need to be removed prior to

assessment, as they would falsely assess test suites as inadequate. Regardless,

mutation analysis may still provide some benefit in assessing students’ tests,

as Aaltonen et al. show that mutation analysis can reveal tests which are

intended to gain an unfair advantage in grading, such as tests which never

fail on a given program.

2.9.7 Potential Applications in

Automated Assessment

It may be possible to use mutants to evaluate the adequacy of grading test

suites. Evaluating a grading suite’s adequacy is important, as it provides some

reassurance that the grading process is fair. An inadequate test suite may fail

to identify students’ faults, resulting in some students receiving grades that

are too high. These students would also not receive feedback to help them

to correct their mistakes in the future, resulting in less effective formative

assessment. By contrast, students’ solution programs with faults that are

detected instead will receive lower grades; this results in unfairness and

inconsistency in summative assessments. As a new programming task would

not have any students’ solutions, a grading test suite’s adequacy cannot be
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evaluated using real faults. Even where students’ solutions are available, only

real faults that have already been identified by either the test suite or costly

manual analysis can be used to evaluate adequacy. Existing faults that have

not been identified cannot be used to evaluate adequacy. Mutants therefore

offer a viable alternative to real students’ faults, since all non-equivalent

mutants can be used as a proxy for known faults.

As mutants can be used by developers to guide improvements to their test

suites [154], they could similarly be used by tutors to assist in improving their

automated grading test suites. By gaining knowledge of which mutants are

undetected, tutors can evaluate if a student may make a similar mistake, and

if so, add new tests to detect them, providing more appropriate test-based

feedback and more accurate grades.

For mutation testing and analysis to be effective, mutants must be capable of

simulating students’ mistakes, as they do real faults. This can be evaluated

via empirical studies, similar to those discussed in Section 2.9.2.

2.10 Test Generation

Regression testing presents a unique opportunity; the availability of an existing

(presumably correct) program allows for it to be used to automatically derive

new test cases to identify divergences in behaviour in future revisions of the

program [155]. The process of deriving such tests from an original program is

test generation, and offers a means to save the time cost of writing regression

tests. Furthermore, human testers may focus on possible faults that they

expect could be introduced into a program; generative testing processes can

instead explore the program or its specification as a whole, possibly closing the

gaps in completeness of manually-defined tests [156]. Automated assessment

can effectively be modelled as regression testing, with a tutor’s reference

solution acting as an original program, and students’ solutions as a series of

modifications to it. Therefore, test generation also offers a potential means of

easily creating additional tests for automated assessment, and may improve
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the detection of students’ faults that a tutor does not expect.

One approach is random testing; randomly generating test inputs, and exe-

cuting the source program (e.g. reference solution) with them to determine

their according expected output [157]. Randoop [158,159] builds upon this,

by constructing a sequence of a program’s methods to call, using the return

values of methods observed by previous generations as parameters of later

methods in new tests.

An alternative approach is to use search-based techniques [160]. Such tech-

niques guide the generation of new tests by a fitness heuristic, such as

individual test goals, or a test adequacy metric. New tests which improve

such heuristics should also improve a test suite’s ability to detect real faults.

Some search-based testing techniques are inspired by biological phenomena.

For example, artificial immune system (AIS) approaches are inspired by the

immune system of the human body; tests are reproduced and modified to

achieve coverage targets in a manner analogous to how immune cells are pro-

duced by the body to identify pathogens [161]. Another biologically inspired

approach is to use genetic algorithms, as employed by EvoSuite, an evolu-

tionary search-based test generation tool [162,163]. EvoSuite combines and

alters test cases between candidate test suites, guided by a fitness function to

maximise the coverage of the next generation iteration’s candidate test suites.

EvoSuite also applies mutation analysis to prune the assertions of its gener-

ated test cases, by removing assertions that do not reveal any mutants. Also,

undetected mutants reveal where better assertions are required, providing

goals for the tool to generate new assertions. Such search based approaches

are typically more effective than random testing, as shown by Almasi et al.,

who found that tests generated by EvoSuite detected 56.4% of real industrial

software faults, while Randoop’s tests only detected 38.0% [164].

Test generation still presents some challenges. First, generated tests may

not perfectly reveal faults; in their experiment on real faults in an industrial

software system, Almasi et al. found that tests generated by either tool could

not detect more challenging faults, especially those that require the creation

of a specific object, or particular boundary values, to identify [164]. This
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means that, if applied to automated assessment, generated tests could miss

students’ mistakes, preventing students from receiving appropriate feedback

and grades. Second, if used for automated assessment, generated tests may not

necessarily reflect and isolate individual learning outcomes; they may cover

several unrelated learning outcomes if they test several different methods. It

may be possible to avoid this, by using mutation analysis to guide generated

tests towards individual types of faults, or faults in particular locations, but

this is out of scope for my research. Finally, generated tests can be hard

to read and understand [164]. This makes generated tests inappropriate

to provide directly to students, since students would likely be unable to

understand what deficiencies of their code the tests truly reveal. However,

they can still be used by tutors to augment their test suites, in order to reveal

more students’ faults. This could be particularly beneficial for grading to

distinguish between the correctness of different students’ solution programs.

2.11 Fault Localisation

Fault localisation aims to simplify debugging by outputting a set of suspicious

program elements (e.g. lines) that are likely to contain a fault [165]. Spectrum-

based fault localisation (SBFL) is a common approach to fault localisation

that uses the recorded behaviour from a program’s executions (e.g. test runs),

called program spectra, and errors (e.g. failing tests) to construct a model.

Program spectra consist of a series of a program’s components, which are

observed to have been hit (i.e. covered) or not for each individual execution

of the program (i.e. test run), irrespective of an error being encountered

during an execution. Consequently, program spectra can be constructed

in a similar manner to code coverage, using program components that are

identified similarly to coverage goals:

• Block hit spectra consider individual blocks of code (such as statements

or lines). Each block is flagged if it has been run during an execution

of the program [166].
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• Branch spectra track the conditional branches executed during a set of

runs of a given program. This can either be represented as a boolean flag

indicating if the branch has been executed or not (branch-hit spectrum),

or as a count of the how many times the branch has been executed

(branch-count spectrum) [167].

• Path spectra represent the paths across a program’s control flow graph

that have been taken during its execution, such as a series of conditional

branches within a method [168].

These spectra are stored in an N ×M activity matrix, A, for N runs (i.e.

tests) and M components (e.g. lines) [169]. Each element of this matrix,

aij, denotes that a component, j, was executed during a run, i. Next, the

results of each run of a target program (i.e. test) are stored in an error

vector, e, such that an element denotes whether a run passes (ei = 0), or fails

(ei = 1). The activity matrix and error vector effectively form a model that

can be used to associate the results of runs with program components. This

association is performed by a spectrum-based fault localisation algorithm,

which computes the similarity between the error vector and the activity

column of each component. One particularly prominent means of determining

similarity is the Ochiai coefficient [170, 171]. These similarities are then

used to rank components in order of suspicion; component activity columns

with a high similarity to the error vector are more likely to contain a fault.

Essentially, if a particular line is covered by every test that fails, it is more

likely to contain a fault. Gouveia et al. show that if this data is visualised in

an appropriate manner, developers may be able to find (and correct) software

faults with much less effort [172]. Similarly, this could perhaps be used to

provide students with feedback on where they have made an error.

2.11.1 Diagnosability

Perez et al. have proposed DDU (Density, Diversity, Uniqueness), a metric

to estimate a test suite’s diagnosability; its ability to accurately predict the
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location of faults with fault localisation [173]. DDU combines three metrics,

density, diversity, and uniqueness together:

• Density, ρ, which was previously used as a standalone diagnosability

metric by Gonzalez-Sanchez et al. [174], evaluates the proportion of

components that are hit across every run.

ρ =

∑j
i Aij

N ×M
,

where C = set of system components,

M = |C|,
T = set of test cases,

N = |T |,
A = an M ×N activity matrix;

Aij denotes whether component cj was executed by test ti

Where ρ = 1, every component is covered in every run, and where ρ = 0,

none of the components are ever covered. Both of these absolute cases

would be detrimental to fault localisation, since an error vector would

be equally similar to every component’s activity column; there is no

information gain. Gonzalez-Sanchez et al. have shown that the optimal

density is ρ = 0.5. In order to combine density with additional metrics,

Perez et al. normalise ρ to ρ′, where the maximum, ρ′ = 1, indicates the

ideal density, and the minimum, ρ′ = 0, indicates that every observation

in the activity matrix has the same value:

ρ′ = 1− |1− 2ρ|

However, density can only accurately evaluate diagnosability if the

observations in the activity matrix are distinct. Consider a series of

tests, which each only hit the same components, and miss the same

quantity of other components. In this case, the activity matrix may

have an optimal density, ρ′ = 1, but a similarity metric would not be

able to fit an error vector to a single component column, especially
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if the error vector does not have the same test failures as any of the

columns. A metric that separates similar tests is also required.

• Diversity is evaluated by the Gini-Simpson index, G [173,175]. In the

context of diagnosability, diversity determines the likelihood that two

randomly selected tests differ in their behaviour.

G = 1−
∑
n× (n− 1)

N × (N − 1)
,

where n = the number of tests with the same activity

The ideal case (G = 1) is for every test to have a unique activity

signature (n = 1); each test executes a different set of components,

though these sets can have some overlap. This improves information

gain for fault localisation, since if tests behave differently, a similarity

metric should be able to better distinguish between different components.

In a case where G = 0, every test behaves the same with respect to the

components, so every component would be completely similar to each

other.

However, combining ideal density and diversity does not guarantee

that a test suite offers maximum information gain for fault localisation.

In such a case it may still be possible for two or more components

to pass and fail for the same tests, since the tests may have different

behaviour for other components. Where components share the same

activity, they are deemed identical by similarity metrics. If an error

vector was found to be similar to these components, a fault localisation

algorithm would be unable to determine which of the components is

most likely to represent the fault. A diagnosability metric should also

consider these ambiguous components.

• Uniqueness, U , measures how many ambiguous groups of components
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are present in an activity matrix.

U =
|G|
M

,

where G = a set of subsets of C, such that members of each subset

have the same activity for all tests

In this definition, |G| effectively represents the number of groups of

components that are covered by the same tests. Where no ambiguous

components exist (U = 1), an activity matrix with ideal density and

diversity should differentiate between every component, and a similarity

metric should be able to match an error vector to its closest components,

providing an effective fault localisation estimate.

Baudry et al. used uniqueness to measure diagnosability [176]. However,

Perez et al. note that uniqueness alone may not be an effective diagnos-

ability metric, since it does not guarantee that various components can

be combined to localise multiple faults simultaneously.

Perez et al. combine these metrics to form DDU, by multiplying their results

together:

DDU = ρ′ × G × U

This approach combines the benefits of each submetric, while avoiding the

issues that arise from using any of the metrics alone. Perez et al. found that

optimising generated test suites for DDU resulted in improved localisation of

real faults compared to optimising for branch coverage.

The submetrics of DDU may have some implications for test suites used

in automated grading. Diverse test suites evaluate different components of

the program; they can reveal students’ faults in different locations. High

uniqueness indicates that each component of a program is only covered by

a particular set of tests, and a fault in such a location may have a subset

of tests that distinctly cover it. High values of these metrics for a reference

solution may benefit grading, since they would indicate that each test is
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primarily focused on one aspect of the task’s specification. This means that

a student’s fault in one aspect of the specification would be less likely to

affect their grades for other aspects of the specification. Combined with the

other metrics, density gauges how evenly a test suite covers a program. It

is possible that unevenly covered test suites could result in unfairness. For

example, if a student makes a mistake that is heavily covered, they will likely

receive a much lower grade than a student who makes a mistake that is less

covered, even if the mistakes themselves are similar.

2.11.2 Mutation in Fault Localisation

Mutants can be used to aid fault localisation, by taking the importance of

program components into account; modifying an important component should

cause more tests to fail [165]. Mutation based fault localisation (MBFL)

techniques assign suspicion to mutants, since tests that kill the mutants

should be able to reveal real faults. Two MBFL techniques, MUSE [177] and

Metallaxis-FL [178] each generate a set of mutants for each component of

a program. In summary, MFBL involves computing a suspiciousness score

for each mutant, based upon how many tests that it fails which pass for the

original program, and how many tests that it passes which fail for the original

program [177]. This is based on the premise that:

• a test which fails due to a faulty component is more likely to pass on a

mutated version of the component, and

• a test which passes on a correct component is more likely to fail on a

mutated version of the component.

A component’s overall suspiciousness score is then computed by combining

the scores of its constituent mutants, and localisation is performed on these

components using an error vector, in the same manner as in SBFL.
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int abs(int x) {

if(x > 0) { return x; }

return -x;

}

(a) Example method; returns the
absolute values of an integer.

@Test void testPositive() {

assertEquals(2, abs(2));

}

@Test void testNegative() {

assertEquals(2, abs(-2));

}

(b) Test suite β;
ρ′ = 1.0, G = 1.0, U = 1.0.

@Test void testPositive() {

assertEquals(2, abs(2));

}

@Test void testZero() {

assertEquals(0, abs(0));

}

@Test void testNegative() {

assertEquals(2, abs(-2));

}

(c) Test suite ε;
ρ′ = 1.0, G = 0.67, U = 1.0.

@Test void testAllOne() {

assertEquals(1, abs(1));

assertEquals(1, abs(-1));

}

@Test void testAllTwo() {

assertEquals(2, abs(2));

assertEquals(2, abs(-2));

}

(d) Test suite ζ;
ρ′ = 0.0, G = 0.0, U = 0.5.

Figure 2.6: Fault diagnosability metrics of various test suites for the method
originally defined in Figure 2.2. These diagnosability metrics are density (ρ′),
diversity (G), and uniqueness (U).

2.11.3 Potential Applications in

Automated Assessment

Fault localisation may offer some benefits for the automated assessment of

students’ programs, particularly in generating automated feedback. Since

fault localisation has been shown to assist developers in finding faults [172],

the output of a fault localisation tool could be used to help students under-

stand where they have made a fault. This is important, since introductory

programming students sometimes find conventional compiler messages hard

to understand [179], and may not fully grasp software testing strategies.

Furthermore, fault diagnosability metrics could be used by tutors to under-

stand how well their tests isolate individual faults. This may be useful to
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create test suites where each test only covers an individual learning outcome or

a set of similar faults. This could improve the fairness of automated grading,

since it would otherwise be possible for a student to make a minor mistake for

one learning outcome, which also fails tests that are intended to evaluate other

learning outcomes. This would also ensure that students can easily interpret

what test failures mean with respect to their mistakes. For example, consider

the test suites in Figure 2.6, assuming each of the diagnosability metrics

use line coverage as components, and that all of a line must be executed to

be covered, for simplicity. First, suite β (Figure 2.6b) yields a maximum

value (1.0) for each diagnosability metric, since it each of its tests evaluate

a different line; it is balanced. The tests in suite ε (Figure 2.6c) are able

to fully distinguish between each line, so its density and uniqueness metrics

yield the ideal values. However, its diversity is only 0.67, since the second

line is covered by two of the three tests; the tests evaluate the method’s lines

unevenly. Finally, suite ζ (Figure 2.6d) yields minimum possible values for

each metric for this method, since both tests cover the method in exactly

the same way; they cannot separate between the lines. If a student was to

make a mistake in either line, a tutor would not know which line the mistake

would effect; the tutor would not gain insight into the nature of the student’s

mistake. By contrast, with a suite like β, they would be able to understand

exactly what mistake a student made from the failing test alone; perhaps

revealing which learning outcome the student has not fully grasped. Naturally,

this is a simple example; a real assignment would be more complex, with

more possible groups of statements to distinguish between.

2.12 Conclusion

In this literature review, I have affirmed the importance of tutors having

accurate knowledge of the mistakes that students can make in introductory

programming assignments, in order for them to develop effective automated

assessments that use unit tests and static analysis tools. However, there is

also evidence that tutors do not always hold this knowledge in a manner that
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fully reflects reality [23]. I have identified that any techniques which assist

tutors in identifying and understanding potential students’ mistakes would

be of a practical benefit, and would result in automated assessments that are

fairer, more consistent, and able to provide richer feedback to students.

In particular, mutation testing and analysis offer a promising means to directly

simulate students’ faults, which tutors would be able to use directly when

developing their assessment test suites. Therefore, mutation testing and

analysis will be the primary focus of my research.

I have also identified that other test adequacy metrics could be beneficial. For

example, tutors could focus on improving code coverage with their tests first,

then focus on identifying mutants once they achieve sufficient coverage [27].

Accordingly, I will also investigate code coverage in my research, such as by

using it as a baseline adequacy metric to compare mutation testing against,

with respect to a suite’s ability to detect students’ faults.

Finally, it is possible that the fault diagnosability of a test suite may impact

the grades that it generates for students’ solutions. I will also investigate

how fault diagnosability metrics impact generated grades, alongside other

test suite metrics, such as mutation score and code coverage.





Chapter 3

Datasets

In order to investigate my research questions, I gathered two datasets of

anonymised students’ programs across a series of programming assignments.

I sourced these solution programs from The University of Sheffield’s first year

introductory Java programming module, with the assistance of Dr. Siobhán

North and Dr. Mari-Cruz Villa-Uriol. I am not able to provide these datasets

as a contribution of my work, since these assessments may be redesigned and

reused in the future; publicly accessible versions of these solutions may be

plagiarised by future students.

3.1 Semester One Dataset

I first collected a dataset of students’ solutions for assignments in the module’s

first semester, which is summarised in Table 3.1. I will refer to this dataset as

SemOne. Since the students are typically inexperienced in programming at

this point in the module, the solutions’ mistakes are indicative of very novice

programmers.

These tasks are focused on guiding students’ learning for basic programming

concepts, and therefore have a low complexity. Assignment1 requires students

69
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Table 3.1: Subject classes of the SemOne dataset.

Class
Students’
Solutions

Compilable
Solutions

Assignment1 63 60
Assignment2 63 62

to read numeric input from the command line interface and a text file. This

numeric input represents denominations of a fictional currency, which the

students’ solutions must perform calculations on, before writing the output

to the user interface. Assignment2 tasks students with writing a program

that decodes input from a file, and uses this input to render a 2D bitmap in

a graphical window.

The assignments in this dataset are fairly simple, and their specifications

typically require students to write a program that is executed via a single

entry point, Java’s main method. Students are able to use their own methods

and variables, but their names and access are not specified. This presents a

challenge for automated testing; the solutions only have one testable method,

and only the program’s standard output can be used to form assertions.

Consequently, only blackbox tests can be written for this single unit; it is

incredibly difficult to isolate sub-procedures of students’ programs and check

their correctness. This makes it almost impossible to identify exactly what

caused a student’s program to fail a test from the results of a test alone. This

introduces a severe limitation on using these solutions to evaluate testing

techniques. Therefore, I will not use this dataset to evaluate the testing

techniques that I explore in my research; I will only use this dataset to

manually analyse the mistakes that are present in its students’ solutions.

3.2 End of Year Dataset

I also collected solutions submitted by separate cohorts of students for three

end of year programming assignments. This dataset is referred to as End-

OfYear throughout my thesis. The assignments in this dataset are more
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Table 3.2: Subject classes of the EndOfYear dataset.

Assignment
Subject
Class

Students’ Solutions Tests Reference
Solution LoC

Total

Compilable

Fails

≥
1
Test

Manual

EvoSuite
Chess Board 59 45 43 18 14 26

Queen 59 40 34 9 2 41
Wine Cellar 38 36 35 16 15 272
Fitness DataLoader 40 38 38 7 1 71

Questions 40 38 37 20 30 263

complex than those in SemOne. These assignments included specifications

that required students to write methods and classes with particular names,

with a given package structure, in order to ensure that individual components

of the students’ solutions could be tested in isolation, to allow for effective

automated assessment. Students were typically provided with some of the

program already implemented, to give them a common starting point. This

sometimes included interface or abstract classes, which students were to

implement the methods of in their own classes. These qualities offer the

ability to easily test individual aspects of students’ programs, making this

dataset a much better candidate to evaluate the techniques that I explore in

my research.

I selected individual subject classes from these assignments in order to evaluate

solutions with a variety of attributes, such as different numbers of methods

and lines, and the use of different programming concepts. Table 3.2 details

these selected classes, with the number of solution programs and tests for

each. Alongside the students’ solutions for these each of these assignments,

the dataset also includes a correct reference solution, the applications of which

I discuss later in this chapter.

These assignments aim to evaluate students’ abilities to write much more

complex programs than those in SemOne. Chess tasks students with imple-

menting an interactive game of chess. In my study, I have sampled two classes

from this assignment. Board is effectively a data structure that represents

the grid on which pieces are positioned, which is used to set and query the
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locations of the chess pieces. Queen is one of the more complex piece objects,

and requires students to iterate over possible moves, while correctly terminat-

ing the search for more moves in a given direction if the edge of the board

or another piece is reached. Wine tasks students with writing a program to

analyse a database of wine samples. The Cellar class handles the logic of

this analysis, specifically in loading the data, parsing a text file of queries

to apply to the data, and to identify the wine samples with the greatest

and smallest measurements of particular properties. Fitness is focused on

analysing data from a range of fitness trackers. Students’ implementations of

DataLoader should accurately parse the provided data files, and Questions

should include a series of methods which each perform a particular query on

this parsed data.

Assignments in EndOfYear each include multiple class files, including

some that I am not using in my research. If I included these classes when I

execute tests on students’ solution classes, it is likely that issues in the other

classes would influence the behaviour of the subject class under test. For

example, poor implementation in Board could introduce test failures for Queen.

Similarly, each of the subject classes should follow a specification in isolation;

a student’s solution may produce the correct output, but the individual classes

may violate the specification. Following the previous example, a student may

implement updating piece positions in Queen, even if the specification requires

this to be handled by Board; this would represent a specification violation.

To address these potential issues, I isolated the students’ subject classes under

test, and used the corresponding reference solution’s implementation of their

dependency classes. Where possible, I also included any new classes that a

student created beyond the specification, since the class under test may also

depend on such new classes.

Before performing any specific analysis of the students’ solutions, one clear

pattern is that the Chess assignment includes more students’ solutions which

do not compile. This is due to a shift in assessment approach; the Chess

assignment was not designed with a focus on automated assessment, so its

specification imposed comparatively few restrictions on how students could
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implement the classes that I use in this study. In turn, more of these students’

solutions violate particular specifications for the classes. For example, they

may name methods incorrectly, use external libraries, or modify the provided

auxiliary classes that should only be imported and referenced. Consequently,

some of these solutions fail to compile, especially when they are isolated and

recombined with the original, unmodified auxiliary classes.

3.3 Tests

For both the Wine and Fitness assignments, I used the unit tests which were

originally used to grade the assignments, which I helped to design. However,

I did not have access to the original grading tests for the Chess assignment.

Furthermore, the tests for the other assignments did not achieve full coverage.

In order to resolve these issues, I wrote additional tests for each subject class,

with the aim of achieving full coverage.

I also generated additional unit tests for each subject class using EvoSuite,

an automated test generation tool [162]. This increased the variety of tests

that can be sampled to produce unique test suites for my empirical studies.

The number of generated tests for each subject class is shown in Table 3.2,

alongside the number of manually defined tests, which includes both the

original grading tests and my additional tests.

In order to execute these tests on the students’ solutions, I used Gradeer, an

automated grading tool which I developed alongside this research, which I

outline in Chapter 4. In summary, it provides generated grades and individual

test results for each solution as a CSV file, which I perform my data analyses

on. In addition, some of my experiments require the use of coverage metrics.

For this, I execute the test suites on only the reference solution for each

subject class, in order to simulate a situation where a tutor is using such a

reference solution to develop their grading test suite. I use JaCoCo to gather

line-based coverage data for the execution of each individual test [180].
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Table 3.3: Mutants generated by Major.

Subject Class
Mutants

Total Non-Equivalent Unkilled Non-Equivalent
Board 57 53 0
Queen 94 92 2
Cellar 167 137 29
DataLoader 44 41 2
Questions 199 188 16

Table 3.4: Mutants generated by Pit.

Subject Class
Mutants

Total Non-Equivalent Unkilled Non-Equivalent
Board 204 176 0
Queen 386 350 28
Cellar 657 550 123
DataLoader 195 165 13
Questions 804 718 41

In order to ensure that the tests are valid, I executed each test on the

appropriate reference solution. If any tests failed on this reference solution,

they would be making assertions that violate the task’s specification. This

did not occur for any of the tests.

3.4 Mutants

In order to evaluate mutants in my empirical studies, I require generated

mutants for each subject class in the EndOfYear dataset. Therefore, I use

two existing Java mutation tools—Major (1.3.4) [143] and Pit (1.5.2) [147]—to

generate mutants from the reference solution of each subject class. Table 3.3

and Table 3.4 outline the mutants that I generated using each tool.

3.4.1 Major

Major implements a set of simple mutation operators, such as operator

replacement, value replacement, and statement deletion. Major also offers

an option to output the source code of each mutant as well as the compiled

mutants, which I enable, since it simplifies the process of inspecting mutants,
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which is required when I check for potentially equivalent mutants. Major

uses a modified Java compiler to generate mutants, which I execute using the

following command:

path/to/major/bin/javac

-d majorOutput

-s majorOutput

-XMutator:ALL

modelSolution/package/SubjectClass.java

-cp sourceDependencies

-J-Dmajor.export.mutants=true

-J-Dmajor.export.directory=majorOutput

One notable caveat of Major is that it only supports Java 1.7 programs;

programs that use newer features of the language are not supported. This

does occur for some of my reference solution programs. For example, the

reference implementation of Cellar uses lambda expressions to filter the

contents of a list. In these cases, I replaced the unsupported code with

semantically equivalent, version compatible code.
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3.4.2 Pit

Pit offers a wide range of operators [144]; not only simple operators, like

those implemented by Major, but also more complex operators. An example

of one of these complex operators is argument propagation, which replaces

a method call with one of its arguments that have the matching type. I

include such operators in my empirical studies, in order to determine if they

offer an advantage in improving grading test suites over only using simple

mutation opertors. Some of these mutation operators are not enabled by

default, however; the use of all operators must be specified when generating

the mutants:

java -cp pitest-command-line-1.5.2.jar:pitest-1.5.2.jar:

pitest-entry-1.5.2.jar:../jars/junit-4.12.jar:

modelSolution:sourceDependencies:runtimeDependencies:testSuites

org.pitest.mutationtest.commandline.MutationCoverageReport

--reportDir pitOut

--targetClasses package/SubjectClass

--sourceDirs modelSolution

--features +EXPORT

--mutators ALL

3.4.3 Equivalent Mutants

The equivalent mutant problem is a well documented issue in mutation testing

literature [26], and my research is by no means immune to the problem that

it poses. Equivalent mutants are mutants that are semantically equivalent to

the original program; it is impossible to write a test that kills the equivalent

mutant while also passing on the original program. For my subject classes, it

is also possible for mutants to be generated which are not strictly equivalent,

but do not violate the specification of a programming assignment; they would

not represent a fault. I also treat such specification-adhering mutants as

equivalent for the purpose of my research. I found that a subset of mutants
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generated by each tool for every subject class do not fail any test. In some

cases, these unkilled mutants reveal potential inadequacies of the test suite,

but others are equivalent.

If I do not isolate these equivalent mutants, they can impact the results of my

experiments; test suites’ mutation scores will be reduced by the presence of

such undetectable, non-faulty, equivalent mutants. This effect could also be

more prevalent for some subject classes or mutation tools, for which a greater

proportion of equivalent mutants are generated, posing an additional potential

threat to validity. I manually analysed each mutant that was not killed by

any tests, to determine if it is indeed equivalent. To simplify this process, I

used the diff utility, which provides the difference between two input files;

the change the mutant has made. This is a fairly easy, if time-consuming,

process for Major’s mutants; I am able to trace their source code in order

to determine whether their changes cause divergences from the reference

solution’s behaviour. However, Pit does not have the functionality to store

mutants’ source code; it only outputs the compiled Java bytecode of each

mutant. Consequently, I used jd-cli [181], a command-line Java bytecode

decompiler, to allow me to examine the changes that Pit’s mutants made to

the original reference program. If a mutant’s change revealed by diff did

not impact the functionality of the program in a meaningful way, I marked it

as equivalent. I stored each equivalent mutant in a separate directory to the

other, non-equivalent mutants. I then executed the tests on the non-equivalent

mutants to yield the test results for only the non-equivalent mutants, which I

use throughout my empirical studies.

The original reference solution of Cellar includes an overly complex imple-

mentation of its parser method. This introduces problems when I generate

mutants; some mutation tools generate thousands of mutants for this original

implementation, far more than those of the other subject classes. This would

similarly significantly increase the time cost of manually analysing the po-

tentially equivalent mutants for this class. Accordingly, I reimplemented this

reference solution, with a simplified but functionally identical parser method

to reduce the number of potential equivalent mutants without impacting the
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validity of my results.

3.5 Ethics Considerations

Since I am using students’ solutions to programming assignments, my research

is subject to several conditions mandated by The University of Sheffield’s

ethics approval process:

• Only collect solutions submitted by students who provide informed

consent to participate in my studies;

• Fully anonymise the collected data;

• Ensure that the collected data is not published;

• Store the collected data in a safe manner using The University of

Sheffield’s provided infrastructure;

• Delete all of the collected data after my research is fully completed.

Following the approval of my ethics applications 1, I sent consent forms and

information sheets which detail my research and the scope of data collection to

students enrolled in the Introduction to Java Programming module. I repeated

this for three separate cohorts of students. After receiving students’ completed

consent forms, I downloaded the consenting students’ submitted solutions

for the relevant programming assignments from the module’s submission

system. I also executed a script to anonymise the solutions immediately after

I downloaded them. This script renames files, and remove code comments

that appear before a Java class declaration, since students were instructed to

add comments that include their names at the top of their source files.

1IDs of relevant ethics applications: 17775, 23255, 25096 & 30749
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3.6 Limitations

There are some limitations for these two datasets. One limitation common to

both datasets is that, due to The University of Sheffield’s ethics requirements,

I was only able to use solutions submitted by students who completed consent

forms. This may introduce self-selection bias, since students who completed

the consent form may be more engaged with the course, and could make

different mistakes to students who are less engaged with the course.

Since I collected both of these datasets from one module in a single institution,

there are some potential limitations to their generalisability. I recommend that

other researchers perform replication studies using data collected from students

enrolled in other courses, institutions, and different types of educational

organisations, such as MOOCs. EndOfYear does include solutions from

three different cohorts of students; it offers some generalisability with respect

to the students themselves.

Another possible limitation is that some students’ solutions could contain

some faults that are not detected by any tests. This should not severely

impact my experiments, since I perform my data analyses on test suites which

I sample from the wider set of tests for each subject class; these sampled

test suites will typically detect fewer faults than the full test sets; I can still

investigate the relationships between adequacy metrics (e.g. mutation score)

and the detection of students’ faults.





Chapter 4

Gradeer: An Open-Source

Modular Hybrid Grader

This chapter is based upon my published paper:

Benjamin Clegg, Maria-Cruz Villa-Uriol, Phil McMinn, and Gordon

Fraser – “Gradeer: An Open-Source Modular Hybrid Grader” –

International Conference on Software Engineering: Software Engineering

Education and Training Joint Track with CSEET (ICSE-JSEET), 2021 [4]

This paper details my automated grading tool, Gradeer, which I first developed

as an environment to generate grades for students’ solutions using unit tests,

upon which I performed my empirical studies. I later adapted the tool

to assess students’ solutions for the University of Sheffield’s introductory

Java programming module, following the guidance and feature requests of

the module’s leader, Dr. Mari-Cruz Villa-Uriol. These additional features

include test weighting and manual grading components, which I did not

use in my research directly, but which Dr. Villa-Uriol and the module’s

teaching assistants used extensively to assess students’ solutions to various

programming assignments.
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4.1 Introduction

There are several different approaches to automated assessment, including

the use of unit tests [18–21], static analysis tools [90, 102], and program

correction [17]. These each have their own advantages; unit tests provide a

simple means to evaluate the correctness of a student’s program, while static

analysis tools enable the provision of feedback on students’ style mistakes.

A tutor could combine these techniques in a bespoke automated grading

script to effectively assess different learning outcomes, but this would be time

consuming; a completely new script would be required for each programming

task. Modular assessment systems [19, 81, 182, 183] simplify this process;

different assessment approaches are implemented within the system, and only

require configuration to combine them for new tasks. Similarly, such systems

provide a means for new assessment approaches to be implemented, such as

by plugins [81,183], allowing for new and unique assessment functionality to

be used. However, most of these grading systems are web-based; they excel

at automated assessment, but prevent an educator from interacting directly

with a student’s program while it is executed. This poses a limitation, since

some aspects of assessment simply cannot be performed automatically, such

as the user experience of interacting with the GUI of a student’s program.

To address this, I implemented Gradeer, a hybrid modular grading system

that can run on a tutor’s personal computer, allowing for the strengths of

both automated and manual assessment to be employed. This chapter details

the design of Gradeer, and its application to assess an end of year introductory

Java programming assignment, where the tool’s hybrid approach allowed for

the use of a large number of consistent automated assessment criteria, and

aided in the provision of detailed manual feedback to students. Gradeer is

available on GitHub under the GPLv3 license, which allows users to write

their own extensions and integrations for the tool [184].



4.2. THE GRADEER GRADING TOOL 83

4.2 The Gradeer Grading Tool

Gradeer is an assessment tool which provides tutors with the benefits of both

automated and manual assessment in a single package. The tool achieves this

using a modular design, allowing a user to choose how to assess a programming

task using simple configuration files, or even define their own assessment

modules for specific purposes. To allow for manual assessment, Gradeer is

designed to be used by tutors on personal computers, where the user can

interact with the program via a CLI. Gradeer is implemented in Java, and

currently facilitates the assessment of Java programs. This section describes

my design of Gradeer, alongside some of its benefits.

4.2.1 Checks

I designed Gradeer with a focus on modular grading components, called

checks, each of which represents a single grading criterion. Different types

of checks are currently implemented, defining how a criterion’s base score (a

decimal value between zero and one) can be determined for a given process

and student’s solution. Various checks of different types can be used together

in a single run of Gradeer, constructing a markscheme to assess several

learning outcomes. For example, users can configure Gradeer to use multiple

checks to run various test suites, perform static analysis, and manually assess

specific aspects of a solution. Users configure their checks in JSON files.

Users can also implement new checks to add the functionality of unique and

domain-specific grading tools.

One currently implemented type of check is the TestSuiteCheck, which

executes a given JUnit test class on a student’s solution via Apache Ant [185],

then calculates a base score as the proportion of tests that pass. Tutors can

assess individual learning outcomes by grouping tests that evaluate the same

outcome into one class.

I also implemented check types for two static analysis tools, Checkstyle and
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PMD [90,102], in order to automatically assess the code quality of students’

solutions. Such checks search the output of their respective tool for a user

defined rule violation. The number of violations in each source file of a

solution is recorded and used to compute a base score. Users can also define

a minimum and maximum number of violations, which yield base scores of

one and zero, respectively.

To support manual assessment, I implemented a ManualCheck type, which

displays a user-defined prompt and score limit to the user when executed.

This check then parses numeric input from the user and normalises it to a

base score in the range of zero and one. For example, the following response

would produce a base score of 0.6:

How informative are the variable names?

(0 = very poor, 10 = excellent)

# 6

Each check has an associated weight; a score multiplication factor to allow

a test to have a greater or smaller impact on each solution’s overall grade,

as discussed in Section 4.2.2. This weight can be defined by the user. In

addition, each check has associated feedback to provide to a student for their

solution. For most checks, this feedback is determined by mapping a base

score to one of several feedback values that have been pre-defined by the user.

For example, the above manual check may provide students with feedback

for the base scores, bs :

• 0.9 ≤ bs ≤ 1.0: “Your variable names are informative.”

• 0.5 ≤ bs < 0.9: “Some of your variable names could be more informa-

tive.”

• 0.0 ≤ bs < 0.5: “Most of your variable names could be more informa-

tive.”

Manual checks can also read text input from the user, allowing for additional
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Figure 4.1: Overview of Gradeer’s flow of execution. The dotted areas indicate
different phases of the execution. Waved boxes are files, parallelograms are
internal data, and regular boxes are processes.

feedback to be provided on an individual basis. For example, a tutor may

enter “a is not an informative variable name, leftMotor would be better.”

4.2.2 Execution

Figure 4.1 shows an overview of Gradeer’s execution process.

Compilation & Check Loading

First, Gradeer compiles every student’s solution and every reference solution

(Section 4.2.2). At this stage, any solutions which do not compile are flagged.

These solutions are reported to the tutor for review, and are excluded from

further execution. Next, Gradeer loads every check defined in the JSON

files. The tool also compiles the test classes that are provided by the user.

If enabled, Gradeer automatically generates a test suite check for each test

class which does not have a matching check already defined by the user.
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Reference Solution Execution

The user can supply a set of one or more reference solutions, entirely correct

solutions to the programming task being assessed. Users can choose to

use multiple reference solutions to define different correct implementations

of the programming task. In order to identify and remove invalid checks,

Gradeer executes every check on each provided reference solution. Checks

which attain a base score of less than one on any of the reference solutions are

considered to be invalid, and are removed; they falsely claim that a reference

solution is partly or completely incorrect. This prevents invalid checks from

being used in the assessment of students’ solutions, preventing them from

unfairly losing or gaining grades, or being given inaccurate feedback. For

example, uncompilable test classes will not pass on any solutions, so their

checks are removed. The names of such invalid checks are stored in a file for

the tutor to review and correct.

Solution Grading (for each Student’s Solution)

Pre-checks In order for some checks to function properly, a series of pre-

checks are executed on each solution. For example, checks for Checkstyle and

PMD require pre-checks which execute their corresponding static analysis

tool on the solution under test and store its output in memory.

Solution Inspection To support effective manual grading, Gradeer includes

a solution inspector which can perform two processes, as configured by the

user. The first executes a student’s solution in a separate thread before

running any manual checks. This allows the user to be able to interact with

the solution, and to observe its user interface, which may be relevant to the

rubric of manual checks. The solution execution thread is closed following

the completion of every manual check on a given solution. The second opens

each of the solution’s source files in an external user defined text editor,

such as Atom. This allows for the user to perform manual code inspection,
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for example to determine the quality of variable names or comments. The

solution inspector removes the need for the user to manually run a student’s

solution to interact with it, or open its source files to inspect it, saving time.

Checks The final step of a solution’s grading process is to run every check

on it. In order to improve execution time, Gradeer runs automated checks

in parallel by default. Manual checks are only executed in the main thread,

however – they require user input, and therefore could otherwise result in

the occurrence of race conditions. In order to prevent some JUnit checks

from taking too long to execute, Gradeer has a user configurable global test

timeout, where any tests that take longer than this time are treated as failing.

This is particularly important, since some students’ solutions may contain

bugs that prevent them from halting, such as incorrect loop conditions.

Output

After executing every check on every solution, Gradeer stores the appropriate

grades and feedback for each solution in various CSV files. The final grade of

each solution is stored in one CSV file. This grade is calculated by:

Grade (s) =

∑
c∈C w(c) · Base Score(c, s)∑

c∈C w(c)
,

where s = Student’s solution,

C = Set of enabled checks,

w(c) = Weight of check c

Similarly, the combined feedback of each solution across all checks is also

stored in a CSV file. Gradeer also stores a CSV file with the individual base

scores and feedback of every check for each solution. This file also includes the

weight of each check. This allows for final changes to be made in spreadsheet

software if absolutely necessary. For example, the user can post-process

the students’ grades by adjusting the checks’ weights, and recalculating the
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final grades in the same manner as Gradeer. Users can also gather valuable

information on students’ performance for the grading criteria, facilitating the

provision of group feedback to the entire student cohort.

4.2.3 State Restoration

Following the completion of checks on a solution, Gradeer stores the results

and feedback for every check in a JSON file. When Gradeer is executed

with such files present, it uses them to restore these check results for every

applicable solution, and skips the corresponding checks when processing these

solutions again. This has numerous advantages:

• A tutor can effectively pause the grading process and come back to it

at a later time. This is particularly advantageous when using manual

checks, as programming tasks with many students’ solutions can take

hours to manually assess. State restoration allows this arduous process

to be split into more manageable marking sessions.

• Assessment tasks can be allocated to multiple users, such as TAs.

Tutors can adjust users’ Gradeer configurations to use different solutions

or checks. By allocating different manual checks to different users,

grading can be completed more quickly without reducing consistency.

By merging the users’ state restoration files and re-running Gradeer,

the final grades and feedback can be generated.

• If Gradeer halts unexpectedly, perhaps due to a wider system error, the

user’s grading progress is not lost.

• Tutors can either directly modify the result files to adjust the results

of individual checks, or delete them outright to re-assess a solution.

Running Gradeer again will update the final output files (as described

in Section 4.2.2). Tutors can also choose to add new checks after initial

executions of the tool to capture additional assessment requirements.
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4.3 Case Study

In this section, I discuss the deployment of Gradeer to assess an end of

year introductory Java programming assignment. The module’s leader, Dr.

Villa-Uriol, and the module’s teaching assistants used Gradeer to assess 171

students’ solutions for this programming task, which I helped to design.

4.3.1 The Assignment

The assignment was a redesigned version of the Wine assignment that is

included in my dataset, but was undertaken by a different group of students.

The task required students to parse a series of structured input files into a

provided data structure, then implement a set of methods that query this

data. The assignment also required students to plot graphs for this data in

a GUI using Java’s Swing library. A primary goal of the assignment was to

provide students with experience in working on a multi-faceted project with

co-dependent systems, which are more akin to real software than the simpler

introductory programs used earlier in the course. As an end of year assessment,

the assignment had a fairly wide span of learning outcomes. Such learning

outcomes included the use of polymorphism, dynamic binding, bespoke data

structures, the choice and use of various Java Collections, text manipulation,

GUI programming, algorithm design, and the use of good quality code and

programming style.

We first determined the overall assignment specification, then focused on

creating a reference solution that captured this specification. We then created

a set of grading unit tests, ensuring that they were valid and that the reference

solution passed on each of them. Following this, we duplicated the reference

solution in order to create a skeleton project, from which we removed the

classes and methods that students were to implement.
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4.3.2 Release

We distributed the skeleton project to students. We also provided the students

with a set of input data files that were to be read by their implemented

parsers. These data files were a subset of those that we later used when

grading the assignment. Around a week after we released the assignment, we

also provided students with a set of public tests. We designed these tests to

ensure that students’ code included the basic functionality of the assignment.

This provided students with a degree of feedback as they worked on the

assignment, and dissuaded students from submitting solutions which are not

compatible with our grading environment, such as including incorrect class

names.

4.3.3 Check Configuration

We configured Gradeer to use 45 checks:

• 26 test suite checks (each check executed one unit test),

• six PMD checks,

• six Checkstyle checks, and

• seven manual checks (for GUI functionality and subjective aspects of

code review, such as variable names).

By using these checks together, we were able to use Gradeer to assess all of

our learning outcomes. The manual checks were important in this regard,

since the design of the GUI and some aspects of code quality cannot be fully

graded automatically.
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Table 4.1: Average time to perform each assessment task on each applicable
solution.

Assessment Task Average Time Per Solution

Compilable Solutions
Compilation ∼1.6 seconds
38 Automated Checks ∼28.2 seconds
7 Manual Checks ∼2 minutes

Problematic Solutions
Problem Identification ∼11.3 minutes
Solution Repair ∼11.4 minutes
Individual Feedback ∼10 minutes

4.3.4 Assessment

While Gradeer supports the use of all types of checks in a single execution,

we split the checks across two separate execution configurations; one for

automated checks and one for manual checks. This was necessary since we

anticipated that some solutions would be problematic, containing issues that

would prevent compilation or execution. Running manual checks on some of

these solutions would have been a waste of effort if the solutions could not be

executed properly. By splitting the checks we were able to first compile the

students’ solutions and run the automated checks to identify any problematic

solutions, and to assess the working solutions. We identified 48 problematic

solutions. We repaired these solutions where possible so that they could

still be graded with Gradeer, but added a penalty for doing so when post-

processing the grades. We repeated the automated grading for these repaired

solutions. However, 11 of the solutions could not be repaired due to severe

issues. We wrote individual feedback for each of these solutions to explain

the nature of these problems. Finally, we re-executed Gradeer with only the

manual checks on every working and repaired solution. Table 4.1 shows the

average amount of time that various aspects of running the assessment with

Gradeer took for each applicable solution, alongside the time taken to manage

problematic solutions.
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Once we completed grading the assignments, we performed some post-

processing on the results. In particular, we added some more specific feedback

and adjusted the weights of some of the checks. Providing the additional

feedback revealed the possible benefit of being able to add specific feedback

when running Gradeer, leading us to later implement the ability to add

user entered feedback for manual checks. We also provided more detailed

and general feedback to the entire student cohort using the distribution of

solutions’ base scores for individual checks. In addition, we used this check

performance data to adjust the checks’ weights. For example, we found that

the scores of some checks would vary considerably between solutions, such as

a PMD check for cyclomatic complexity, for which approximately half of the

solutions achieved < 0.5. In such cases, we increased the check’s weight, as it

better differentiated students’ solutions. However, we attempted to maintain

similar total weights between the broader groups of learning outcomes, such

as overall correctness and code quality, to assess students in a well-rounded

manner.

4.3.5 Benefits of Gradeer

We found that Gradeer’s hybrid grading approach provided several benefits

when assessing this programming assignment:

Fast Manual Assessment

Gradeer provides a particular benefit in allowing for quick manual assessment.

This is mostly due to Gradeer’s solution inspector, which automatically

executes students’ solutions, and displays their source files in a text editor.

Without this feature, a tutor must manually open the correct directory, enter

a command to run the solution, and open the source files, before beginning

the manual assessment. By removing the need to follow these steps for every

solution, Gradeer removes a significant bottleneck in manual grading.
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Automated Grading

By using automated grading wherever possible, we were able to reduce the

number of manual checks. For example, we used some static analysis checks

to evaluate the style of students’ solution programs, such as ensuring that

they used camel case formatting in variable names. By using these checks,

the tutor did not have to look for these issues when performing the manual

code inspection. Similarly, the use of unit tests to assess correctness of some

elements of the program removed the need for the tutor to identify faults

in these elements manually. The additional benefit of automated grading is

that the checks are applied consistently across solutions. Any two students’

solutions which have the same faults are assessed the exact same way.

High Quality Feedback

We found that Gradeer was capable of providing useful feedback to students.

While automated checks only provide simple feedback, the large number of

these checks gave students a very wide range of feedback; they could gain a

good understanding of where they succeeded and where they can improve.

This is supported by Falkner et al.’s findings that students’ performance

improves as more pieces of automated feedback are provided [186]. This

feedback is further augmented by Gradeer’s support for manual checks, the

scores of which we used to determine which of several pieces of feedback to

give to a student. The ability to provide manual feedback at runtime in the

current version of Gradeer supports this even further.

Reusable

In the past, module leads typically used unique autograding scripts for each

assessment. Developing these scripts is a time consuming process, and may

involve repeated effort of implementing similar functionality across multiple

assessments. Conversely, Gradeer can be reused in different assessments;
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beyond the inclusion of new grading tests, Gradeer only requires modifications

to simple configuration files to support a new assessment.

4.3.6 Challenges

When assessing the assignment, we found that uncompilable solutions intro-

duced the greatest time cost. Around 48 of the 171 solutions initially could

not be compiled or executed, due to missing files, syntax errors, or modifying

files that should be unmodified. It is possible that such problems could be

mitigated by preventing students from uploading broken solutions, such as

by integrating Gradeer with the solution upload system, and reporting to

students if an issue is detected.

Running the automated checks did take a considerable amount of time, at

∼28.2 seconds per solution using an AMD Ryzen 1700 CPU. The main

source of this time cost is setting up the test execution environment. We

plan to investigate a possible workaround for this issue in the future. In

addition, the version of Gradeer that we used for this assessment did not

support multithreading. After implementing multithreading, we observed an

execution time of ∼10.9 seconds per solution on the same hardware.

We found that some static analysis rules can present a unique challenge in

being used in an automated grader. In particular, Checkstyle’s indentation

rules can only be used with one tutor defined indentation width, while

indentation widths may vary between solutions. This is an issue since several

different indentation widths are commonly used in software development, any

of which may be acceptable provided that they are used consistently. It may

be possible to use multiple similar checks and only use the highest base score

as a workaround.
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4.4 Use in Experiments

I use Gradeer to execute tests on students’ solutions in my experiments, by

defining each unit test for a subject class as a check. I do not assign weights

to any of these checks; they all contribute to generated grades equally. I also

use it to execute tests on my generated mutants, by defining each mutant as

an individual solution. I use the generated grades and individual check result

CSV output in my data analysis for each experiment.

4.5 Conclusion

In this chapter, I have presented Gradeer, my modular grading tool that

supports both the automated and manual assessment of students’ programs.

I have also outlined our experiences in using the tool to assess an end of

year assignment for an introductory programming course, where it effectively

supported the provision of quality feedback to students, and the automatic

generation of grades. I have also described how I use Gradeer to facilitate

the execution of my experiments for this thesis. Gradeer is available at

https://github.com/ben-clegg/gradeer [184].

I plan to continue to maintain Gradeer, with a focus on modularising its

other components, such as processes that are executed before checks, and

Java-specific features. I also intend to add web integration to the tool, to

enable it to be automatically executed when a student submits their solution

program to a learning management system, informing them if their solution

cannot be executed so that they can fix the issue.

https://github.com/ben-clegg/gradeer




Chapter 5

Investigating the Influence of

Test Suite Properties on

Automated Grading

This chapter is adapted from two of my published papers:

Benjamin Clegg, Phil McMinn, and Gordon Fraser – “The Influence of

Test Suite Properties on Automated Grading of Programming Exercises”

– Conference on Software Engineering Education and Training (CSEET),

2020 [2]

Benjamin Clegg, Phil McMinn, and Gordon Fraser – “Diagnosability,

Adequacy & Size: How Test Suites Impact Autograding” – Conference on

Software Engineering Education and Training (CSEET): Collaborative

Special Track at the Hawaii International Conference on System Sciences

(HICSS), 2022 [5]

The second paper [5] is a revision of the first [2], improving the analysis

methodology, and using real students’ solutions in place of artificial faults.
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5.1 Introduction

In test-based automated grading, a student’s grade can be derived from

the proportion of tests in the grading test suite that pass for their solution

program. Ideally, this should depend solely on the correctness of the program,

but it is possible that the suite itself could be an influential factor, that could

produce a source of potential inconsistency, inaccuracy and unfairness in

grades. For example, test suites can vary in quality; some suites may fail to

detect some faults [187]. This could result in some students receiving grades

that are too high. Alternatively, a suite could detect detect some mistakes

significantly more than others, overly punishing students that make such

mistakes.

Figure 5.1 illustrates how different test suites can impact grades. In this

example, the method in Figure 5.1a should return the absolute value of an

integer, but a fault in one branch causes it to return the same value as its

input parameter. If I consider grades to be calculated as the percentage

of tests that pass, the suite in Figure 5.1b yields a grade of 100%; it only

includes one test that never exercises the fault. If I extend this suite to

execute more code, increasing coverage, it generates a more reasonable grade

of 50% (Figure 5.1c). However, even with full coverage, extreme grades can

still be generated; in Figure 5.1d, both of the tests are very similar, and make

assertions that exercise all of the method, including the faulty line, so they

both fail, generating a grade of 0%. Considering this, other metrics beyond

adequacy may prove to be useful in guiding the fairness and consistency of

grading. For example, diagnosability metrics (e.g. uniqueness) can provide

some insight into how a test suite exercises a program. In this case, the suite

in Figure 5.1d achieves minimal uniqueness, since every line is covered the

same way by each test. In comparison, the suite in Figure 5.1c achieves the

maximum possible uniqueness and generates the most reasonable grades; the

return statements are covered by different tests. In reality, it is possible that

similar issues could be present in tutors’ grading test suites, perhaps due to

insufficient TPACK in how to construct effective and balanced test suites.
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I seek to understand how such differences in test suites affect students’ grades.

I originally investigated this by measuring grades generated for mutants [2].

However, such individual mutants do not necessarily perfectly reflect students’

programs. For example, students’ programs may contain multiple faults across

several locations. I have revisited this study, using real students’ solution

programs in place of artificial mutants, to better reflect the real influence of

test suites on grades. In this study, I consider two key research questions:

RQ1: Do grades vary with different test suites? I conducted a

standard deviation analysis on the grades generated by sampled test suites

for students’ programs. I found that the mean standard deviation of grades

for each solution is ∼10.1%; different suites generate a wide variety of grades.
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int abs(int x) {

if(x > 0) { return x; }

- return -x;

+ return x;

}

(a) A fault present in a method that should return the
absolute value of an integer.

@Test void testPositive() {

assertEquals(2, abs(2));

} // Passes

(b) Resulting grade: 100%.

@Test void testPositive() {

assertEquals(2, abs(2));

} // Passes

@Test void testNegative() {

assertEquals(2, abs(-2));

} // Fails

(c) Resulting grade: 50%

@Test void testAllOne() {

assertEquals(1, abs(1));

assertEquals(1, abs(-1));

} // Fails

@Test void testAllTwo() {

assertEquals(2, abs(2));

assertEquals(2, abs(-2));

} // Fails

(d) Resulting grade: 0%

Figure 5.1: Example test suites and a faulty method, illustrating an impact
on generated grades. The fault is represented in diff notation; the red line
starting with ‘-’ is the correct statement, which is instead replaced by the
green line beginning with a ‘+’ below it.
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Table 5.1: Dataset summary. I only include mutants that are detected by at
least one test, and merge any mutants with equivalent test traces.

Task
Subject
Class

Students’
Solutions

Unique
Mutants

Tests
LoC

Man. Evo

Chess Board 45 55 18 14 26
Queen 40 46 9 2 41

Wine Cellar 36 40 16 15 272
Fitness DataLoader 38 19 7 1 71

Questions 38 65 20 30 263

RQ2: Which properties of test suites impact grades? To further

investigate exactly how test suites produce the effect I observed in RQ1,

I performed a relative importance analysis of various test suite properties

and the changes in generated grades. I observe that several factors of test

suites influence the generated grades for students’ solutions, including a

suite’s uniqueness, and its ability to detect other students’ faults and artificial

mutants.

5.2 Research Methodology

5.2.1 Experiment Procedure

In this empirical study, I use the compilable students’ programs from my

EndOfYear dataset, and their associated unit tests. I summarise this

dataset in Table 5.1. This study requires a variety of test suites to investigate

how suites influence grades; I generate such test suites by sampling from

the wider set of unit tests for each subject class. I execute each test on

every solution for each subject class, as well as the subject class’s reference

solution. I store the results of these tests, and use them to generate grades

for each sampled test suite, as the proportion of a suite’s tests that pass for a

solution [18]:
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Gs
τ =
|Psτ |
|τ |

,

where s = the student’s solution under test,

τ = a given test suite, such that τ ⊂ T,

T = set of all unit tests for the subject class,

Gs
τ = grade generated by τ for s, and

Psτ = tests in τ that pass for s.

RQ1 As I aim to investigate how much different test suites generate different

grades, I calculate the standard deviation of grades generated by my sampled

test suites for each solution. I use this standard deviation instead of the

absolute range of grades since some suites may only include tests that pass

or fail, and would therefore have a typical grade range of [0%, 100%]. I also

remove any test suites that only generate such extreme grades for every

solution.

RQ2 In order to identify how different properties of test suites cause this

grade variation, I perform a relative importance analysis using linear models

that I construct from normalised test suite properties and changes in grades

for each suite execution. I estimate a change in grades by computing the

grade delta (∆Gs
τ ); the difference between the execution’s generated grade

and the median generated grade for every execution of the same solution:

∆Gs
τ = |Gs

τ − G̃s
T|,

where T = set of all test suites for the subject class, and

G̃s
T = median grade generated for s by every suite in T.
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5.2.2 Test Suite Properties

In order to address RQ2, I observe various properties of the sampled test

suites, in order to evaluate the impact they have on the generated grades for

each student’s solution.

Coverage First, I consider code coverage, since it would be easy for tutors

to measure and interpret when developing a test suite. I use line coverage

(Cτ ), since it is simple to compute and understand, especially in comparison

to some other coverage metrics, such as path coverage.

Cτ =
|Cm|
|Lm|

,

where m = subject class’s reference solution,

Cm = reference solution’s lines covered by τ , and

Lm = all lines in the reference solution.

Mutation Score I also consider a suite’s mutation score (Mτ ) as an ade-

quacy metric:

Mτ =
|FM
τ |
|M|

,

where FX
τ = set of programs in X detected by τ , and

M = set of mutants for the subject class,

with each mutant containing a single fault.

In order to evaluate the mutation score of a suite, I used the mutants that

I generated using Pit [146], since these mutants are generated by a wide

range of operators. I remove any mutants that are not detected by any tests,

effectively normalising the mutation score to a range of [0, 1]. I also merge

any mutants with the same behaviour for every test into a single mutant, such

that every remaining mutant passes for a unique set of tests. This removes
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a potential source of bias, since some types and locations of mutants would

otherwise be considerably more prevalent than others. The number of unique

mutants after merging for each subject class is shown in Table 5.1.

Detection Rate of Other Students’ Faulty Solutions I use the detec-

tion rate of other students’ faulty solutions (D
S\{s}
τ ) as an additional adequacy

estimate, following the principle that a suite which detects other students’

faults should also detect faults in a new student’s solution:

DS\{s}
τ =

|FS\{s}
τ |
|S\{s}|

,

where DS\{s}
τ = the proportion of other solutions detected by τ ,

S = set of all solutions that fail at least one test in

the complete test set for the subject class, and

S\{s} = S, excluding s.

I exclude the solution for which the metric is calculated (s), in order to

prevent the solution itself from influencing the metric. If s is directly included

in the calculation of this metric, the metric would not be independent from

the grade generated for s – it would be a property of the solution and the

test suite, not the test suite alone.

This metric abbreviated as “Other” and “Other Solutions” within some figures

in this chapter.

Diagnosability I also consider the three diagnosability metrics that I

describe in Chapter 2.11, since they offer insight into how a test suite covers

a program. I hypothesise that since a suite with greater diagnosability should

offer more accurate fault localization, it should also offer more consistent

grades, as its tests are more capable of isolating individual faults.
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Density (ρτ ) measures the lines that are covered across every test in a suite:

ρτ =

∑t|t∈τ
l|l∈Lm Atl

|τ | · |Lm|
,

where A = an activity matrix(|τ | × |Lm|);
Atl denotes whether line l was executed by test t.

When ρτ = 0, no lines are ever covered; when ρτ = 1, every test covers every

line. Gonzalez-Sanchez et al. [174] show that the optimal density to isolate

faults is ρτ = 0.5. I use normalised density, ρ′τ = 1− |1− 2ρτ |, in this study;

ρ′τ = 1 indicates the ideal density [173].

Diversity evaluates the probability that two randomly selected tests differ in

their coverage behaviour, measured by the Gini-Simpson index, Gτ [173, 175].

Gτ = 1−
∑

a∈A |a| · (|a| − 1)

|τ | · (|τ | − 1)
,

where a = set of all tests, t ⊆ τ , that cover the same lines in m;

(∀l ∈ Lm,∀t, t′ ∈ a : Atl = At′l), and

A = set of all possible a for τ and Lm.

It is possible for some lines to share the same coverage for every test in a

suite; these lines form an ambiguity group (g). Having few, large ambiguity

groups poses a potential issue for grading; if the lines within an ambiguity

group implement different parts of a specification, tests may not be able to

distinguish which aspect a fault is associated with. Uniqueness (Uτ ) reveals

how many ambiguity groups are present in the program.

Uτ =
|G|
|Lm|

,

where g = set of lines, l ⊆ Lm, that are covered in the same way, ∀t ∈ τ ;

(∀l, l′ ∈ g,∀t ∈ τ : Atl = Atl′),

G = set of all possible g for τ and Lm.
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Ideal uniqueness (Uτ = 1) indicates that every line is not covered in the same

way by every test.

Size Finally, I also consider the size of a test suite, |τ |, for two main reasons.

First, the size of a suite may directly influence grades. For example, if a large

test suite has one failing test suite for a solution, it will generate a higher

grade than one with few tests and a single failure. Second, a suite’s size may

influence other properties, such as coverage and mutation score, as shown

by Namin and Andrews [108]. By including |τ | as a property in my relative

importance analysis, I am able to isolate its co-correlated impact on these

other properties.

With the exception of the detection rate of other students’ faulty solutions,

I measure all of the properties using the reference solution, to simulate a

tutor developing a new grading test suite. For metrics that require coverage

information, I use JaCoCo [180] to record the coverage for every test execution,

and store which lines are covered and uncovered by each test for the reference

solution.

5.2.3 Grading Test Suites

Chen et al. describe a growth-based test suite sampling technique, in which a

test suite is extended by randomly selecting an additional test that increases

a given criterion [27]. This effectively simulates a test suite being iteratively

improved; by storing a unique copy of the test suite whenever a test is added,

it is possible to generate a large number of test suites with varying levels of

adequacy. In order to investigate the possible changes in grades for my first

research question, I used Chen et al.’s approach as inspiration for my test

suite generator. The test suite generator performs the following procedure

for a single generation run:

1. Randomly select a test from the whole set to use as a starting test suite.



5.2. RESEARCH METHODOLOGY 107

2. Identify unused tests from the set that would improve an adequacy

criterion, then add one of these to the test suite.

(a) If the test suite has not achieved 100% line coverage, use line

coverage as an adequacy criterion. A reference solution implements

all of its task’s learning outcomes; increasing coverage simulates

adding tests that cover additional outcomes.

(b) Otherwise, use mutation score as an adequacy criterion; some of

the subject classes can be fully covered with only a small number of

tests, so mutation score can provide a backup measure of adequacy.

(c) If the test suite has already achieved 100% mutation score, reset

the test suite’s mutation score to 0%, and repeat step 2b. This is

similar to the “stacking” approach described by Chen et al. [27,188],

though for this experiment the purpose of this step is to maximise

the number of generated test suites.

3. Store a copy of the test suite in its current form.

4. Repeat from step 2, until only one unselected test remains. I halt the

generation here to avoid bias from a large number of identical suites

that contain every available test.

I do not store the initial suites with only one test each, since they will

introduce a sampling bias by only generating grades of 0% or 100%. In order

to account for the random element of suite generation, I repeat this generation

process 100 times, and use all of the resulting test suites to generate grades

for each of the solutions.

In order to investigate the impact of test suite properties on grades for RQ2, I

could not use the same approach, since constructing test suites with the goal

to optimise coverage and/or mutation score would influence their impacts on

the linear models. I instead opt to construct test suites by randomly sampling

tests from the pool. For each of 100 generation runs, my random sampler

constructed |T| test suites, the number of available unit tests for a subject

class. My generator split these |T| test suites equally between several test
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suite sizes; 20%, 40%, 60%, and 80%. My generator generates each individual

test suite by constructing a pool of the available test suites, and randomly

selecting a test from it, removing the test from the pool in the process. Once

the target number of tests is reached, the generator compares the constructed

suite against other suites constructed during the same generation run, and

adds it to this wider set if no equivalent suites are present. This is repeated

for the run until the target number of tests, or an iteration limit of 4|T|, is

reached.

5.2.4 Relative Importance

To evaluate the impact of each test suite property on generated grades for

RQ2, I perform a relative importance analysis [189] on the observed test suite

properties, with respect to the solutions’ grade deltas. Relative importance

analysis allows for the impact of a linear model’s explanatory variables on the

response variable to be compared to one another directly. Specifically, I use

the relative importance measure first proposed by Lindeman et al. [190,191],

as it allows the relative importance of explanatory variables (i.e. test suite

properties) to be compared, even if they have some degree of correlation to

one another, as is often the case for the test suite properties that I use in this

study. For example, test suites that have a higher coverage tend to have a

higher mutation score [108]. This offers a benefit over simply comparing the

magnitudes of a linear model’s normalised (β) coefficients, which I used in my

original study [2]; β coefficients may not accurately capture the contributions

for correlated explanatory variables.

Lindeman’s relative importance metric relies on observations of a linear

model’s coefficient of determination (R2), which represents the proportion

of variation in the response variable that the model can predict from its

explanatory variables; how effectively the model fits its input data. Measur-

ing R2 as explanatory variables are added to the model yields the model’s

sequential sum of squares (seqR2). For example, a linear model derived from

an explanatory variable, a, will have a given R2, equal to seqR2
a. Adding
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more explanatory variables in a particular order, such as b and c, will each

yield a new R2, forming seqR2
ab and seqR2

abc. Given that b and c both improve

the model’s accuracy, seqR2
abc > seqR2

ab > seqR2
a. Since the seqR2 of every

explanatory variable is equal to the model’s sum of squares, dividing the seqR2

of all explanatory variables by R2 yields their sequential R2 contributions.

The premise of relative importance is to decompose these into individual R2

contributions. Following my example, the sequential contribution of c would

be proportional to seqR2
abc − seqR2

ab, and for b, seqR2
ab − seqR2

a. However,

ordering the explanatory variables poses a challenge; different orders of ex-

planatory variables can yield drastically different contributions, since adding

an explanatory variable in a different order would change its impact on R2.

Using my example, this would occur if (seqR2
abc−seqR2

ab) 6= (seqR2
ac−seqR2

a);

decomposition would yield two different contributions for c. This effect is

especially prevalent if explanatory variables are strongly correlated; adding

an explanatory variable that is correlated to one that is already present will

increase R2 by less than if the correlated variable was not already present.

Lindeman’s metric offers a solution to this problem; it produces an unweighted

average seqR2 from each possible ordering, yielding an average R2 contribution

for a given explanatory variable – its relative importance.

This relative importance measure also provides estimates of the relative

importance in terms of the predictors’ impacts on the variance of the response

variable. This effectively reveals the proportional impact of the properties

on the change in grades, even if the linear model does not perfectly predict

the change in grades. This also allows me to compare the impact of each

property across different subject classes.

I perform this analysis using Grömping’s relative importance R package,

relaimpo. This package also implements bootstrapping – repeated sampling

of the linear model’s residuals – which I use to derive a confidence interval

for this analysis, with 2000 runs per subject class and a confidence interval

of 95%. This effectively yields the estimated upper and lower bounds of

each property’s relative importance; should two properties’ bounds overlap,

it is possible that either property has a slightly higher or lower importance.



110 CHAPTER 5. INFLUENCE OF TEST SUITE PROPERTIES

However, if the bounds of two properties are entirely disjunct, it is safe

to assume that the property with the higher bounds has a greater relative

importance.

I also calculate the Spearman’s correlations between the test suite properties

and grade delta. I do not use these correlations to determine the impact of

the properties, but instead use them to further explain the impacts of the

test suite properties, such as if higher measurements of a property correspond

to increasing or decreasing the divergence in generated grades. Furthermore,

I construct linear models with the test suite properties as predictors, and

the grade delta as the response variable, in order to reveal the benefits of

using a relative importance analysis instead of comparing the β coefficients

of predictor variables.

5.2.5 Threats to Validity

One potential threat to validity is that sampled test suites may not necessarily

reflect the construction of real grading test suites. I mitigated this by explicitly

choosing a guided sampling technique for RQ1, as a test suite that a tutor

would write to cover more learning outcomes should, in principle, increase in

coverage and mutation score as more tests are added. However, for RQ2 I

cannot use this approach, as I am investigating the impact of several properties,

including those which guide the suites for RQ1. Consequently, a random

sampling approach is the only viable option for this dataset.

For RQ2, I use fixed bootstrapping to yield estimate bounds according to a

95% confidence interval, shown by the range bars in Figure 5.3. Confidence

intervals derived from fixed bootstrapping have been shown to not truly reflect

their target confidence level [189], posing a potential threat to validity. I

note that some of the properties may be more similar in how they impact

students’ grades than they appear in the data; properties with slightly less

high importance estimates are possibly more important than those ranked

above them. However, this should not heavily affect the general trends of

relative importance; high or low estimates still provide a reliable indication
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Table 5.2: Summary of grades generated by every sampled test suite for
students’ solutions, across all 30 runs. G̃ represents the median grade across
all test suites and students’ solutions. σG is computed by calculating the
standard deviation of grades generated for each student’s solution, then
calculating the median of these values. All values are rounded to 1 d.p.

Subject Class Median Grade, G̃ Std. Dev, σG

Board 83.3% 8.7%
Queen 100.0% 9.9%
Cellar 78.9% 13.6%
DataLoader 20.0% 14.2%
Questions 87.8% 3.8%

Mean 74.0% 10.1%

of how the observed properties influence generated grades.

5.3 Results

5.3.1 RQ1: To what extent do different test suites

generate varying grades?

Table 5.2 shows the median grades and their standard deviations across all

solutions and test suites, and their means across all subject classes. The mean

standard deviation of grades per solution across all subject classes is 10.1%;

different test suites yield grades that vary drastically for the same solution

program.

Figure 5.2 shows the individual generated grades and grade standard devia-

tions for each solution. I find that the subject classes have some variation

in their behaviour, such as in the range of standard deviations at each test

suite size, or the median grades. This indicates that a programming task

itself may affect how suites evaluate students’ solutions, perhaps because

the specification of how a class should be implemented may influence the

mistakes that students make. I observe a range of standard deviations for

some of the subject classes, suggesting that the grades of some solutions
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Figure 5.3: Relative importance of each test suite property, with respect
to grade delta. The range bars denote the upper and lower bounds of a
bootstrapped 95% confidence interval.

are influenced more by the test suite itself. For example, in Cellar, grades

generated for some solutions by suites with 26% of the tests enabled have

standard deviations of ∼16%, while others have standard deviations of ∼8%.

This solution dependent variation in grades generated by different suites is a

source of potential unfairness; some solutions’ grades are affected by suites

more than others. In comparison, this effect is less prevalent for Board, where

most solutions have similar standard deviations in grades; the influence of the

test suites on their grades is similar between different solutions. I note that

the specification of Cellar is more complex than that of Board. Consquently,

some students’ solutions may contain more faults for particular aspects of the

program’s specification than others, and thus would be more susceptible to

differences in test suites than other solution implementations. However, even

for Board, different suites still generate varying grades for a given solution;

suites themselves have an influence on grades. I consider how suites influence

such behaviours in more detail in RQ2 and Section 5.4.

RQ1 Results: Grades generated by different suites vary considerably,

with a standard deviation of ∼10.1% per solution. This standard deviation

can also vary between different solutions; the grades of some solutions are

affected by the test suite more than others.
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5.3.2 RQ2: Which properties of test suites

impact grades?

In order to determine the impact of each test suite property on the generated

grades, I performed a relative importance analysis on multivariate linear

models from all of the observations for each of the subjects, as described in

Section 5.2.4. Table 5.3 and Table 5.4 show the relative importance estimates

for each test property, with the detection rate of other students’ faulty

solutions included and excluded as a property, respectively. These tables also

include the β coefficients of each property, and the mean correlation of each

property to the grade delta across every subject class. The bounds of the

predictors’ relative importance bootstrapped confidence intervals are shown

in Figure 5.3. Figure 5.4 further reveals the correlations of each property for

each subject class.
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My results reveal how a relative importance analysis is more reliable than

comparing the β coefficients of linear models in some cases. The β coefficients

of correlated predictors may not accurately reflect their contributions to

the predicted variable, or one of the correlated predictors may not make a

statistically significant contribution to a linear model. This can be observed

for mutation score and the detection rate of other students’ faulty solutions

in Cellar; these properties are correlated to one another (rs = 0.8), and

the β coefficient for mutation score is not statistically significant (p = 0.64).

However, if the detection rate of other students’ faulty solutions is not included

as a predictor, mutation score’s β coefficient becomes statistically significant

(p ≤ 0.01), as shown in Table 5.4. Relative importance does not suffer from

this problem, by virtue of summarising the contribution of a single predictor

across linear models constructed by adding predictors in every possible order.

Accordingly, I observe that the impact of mutation score is greater than

the detection rate of other students’ faulty solutions for Cellar, and their

impacts are similar overall.

In this experiment, I use grade delta as an estimate of grading inconsistency;

by assuming that the median grade of a solution is a fair grade, the distance

of individual grades to this median represent their inconsistencies. Grade

deltas do have a limitation, however; if a solution’s median grade is 0% or

100%, grade delta becomes a one-sided metric, equivalent to the proportion

of tests that pass or fail for the solution. In effect, in such cases the metric

does not represent the goal of my analysis. This issue occurs for Queen, where

my randomly sampled test suites generate median grades of 100% for most

solutions, similarly to the test suites that I use in RQ1. This is reflected in

comparatively low relative importance estimates (and accordingly, R2
adj) for

the subject. Similarly, this effect also affects the correlations of the properties

to grade delta. For other subject classes, where correlations are present, they

are typically negative. This indicates that suites with higher measurements

of the respective properties produce lower grade deltas; they generate more

consistent grades. However, for Queen these correlations are typically positive;

instead this only reveals that increasing the values of the properties increases

the proportion of tests that fail for most solutions and test suites. This
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(e) Questions

Figure 5.4: Correlations of all test suite properties and grade deltas. Circled
values indicate low statistical significance (p > 0.05).
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subject also affects the mean observations; the mean p-value of uniqueness’s

correlation to grade delta (p̄ = 0.17) is heavily inflated by its correlation for

Queen (p = 0.87). Excluding Queen from my results shows that the other

correlations for uniqueness are significant (p̄ h 0.00). In effect, for Queen,

grade delta does not truly measure grading consistency, since it is skewed by

such an extreme median grade. This subject class is an outlier in my dataset.

The adjusted R2 of each linear model represents the grade delta’s variance

that is captured by the model, or in effect the combined impact of every

property on the grade delta. This is equivalent to the sum of the relative

importance estimates for each property. This is shown as a percentage by

R2
adj in Table 5.3; the mean across all five models is 25.08%; together, the

properties account for 25.08% of the change in grades.

When evaluating the relative importance estimates, I find that, on average,

the detection rate of other students’ faulty solutions is the most influential

property with respect to a change in a solution’s grades, accounting for 4.86%

of the variance in grade delta. This is followed by the suite’s size, uniqueness,

and mutation score; with impacts of 4.66%, 4.43%, and 4.21% respectively.

Code coverage has a lesser impact on generated grades (2.74%), followed

closely by diversity (2.59%). Finally, density has the least impact on the

change in grades; 1.6% on average. The properties’ contribution estimates

vary between the subject classes. For example, diversity has a very high

contribution for DataLoader, but a very low contribution for the other classes.

These differences are reflected in the contributions of the complete linear

models; the R2
adj for DataLoader is the highest of all of the subject classes.

It is possible that this divergence in behaviour could be due to aspects of the

subject class itself having an impact on grading consistency.

As Figure 5.3 shows, there is some overlap between the bootstrapped con-

fidence bounds for some of the test suite properties. In these cases, the

true order of relative importance for the properties may be slightly different,

with one of the overlapping properties possibly outperforming the other. For

example this effect can be observed for mutation score and the detection rate

of other students’ faulty solutions for Board, Queen, and Questions. In these
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cases, these two properties should be considered as having a similar impact

on grading consistency, since despite the overall estimate for one property

being higher, the true order of their importance could be the opposite.

RQ2 Results: Most properties have a statistically significant impact on

grades, especially suite size, the detection rate of other students’ faulty solu-

tions, mutation score, and uniqueness. Suites with a higher measurements

of these properties tend to generate more consistent grades.

5.4 Discussion

My results indicate that different test suites generate different grades, and that

the properties of these suites influence the generated grades. Taking these test

suite properties into consideration may help tutors to construct grading test

suites that are capable of detecting students’ faults, while avoiding exercising

students’ programs in an unbalanced manner. In this section I consider how

each of the test suite properties can impact generated grades, and which test

design strategies could be employed by tutors to control this impact.

5.4.1 Suite Size

A test suite’s size has a relatively high impact on generated grades, accounting

for ∼4.66% of the variance in grade delta. Since the number of tests in a test

suite is correlated to other properties of the test suite, such as its coverage or

mutation score [108], I include it as a property for my relative importance

analysis, as a means of controlling for its impact. I note that achieving other

metrics (e.g. high coverage and mutation score) will likely require a tutor to

create a series of high quality tests, the quantity of which will depend on the

programming task that they assess.
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It is important to include the number of tests in a suite in the relative

importance analysis of test suite properties and adequacy criteria in order

to control for its effect.

5.4.2 Coverage

Coverage has a moderate impact on grading consistency compared to the

other properties, with a relative importance estimate of ∼2.74%. While

coverage does impact grading consistency, some other properties of a test

suite have a greater impact. Coverage has a negative correlation with grade

delta, indicating that test suites with higher coverage produce grades that are

closer to the median for the subject class; grading is more consistent. This

is likely due to uncovered faults being impossible for a test suite to detect;

covering more lines improves a suite’s ability to detect faults, and therefore

generate grades that are not 100%, and closer to the median grade of the

solution across every sampled suite in this study.

Maximising coverage is important to create consistent test suites, but other

properties of a test suite may be more important, such as its ability to detect

more subtle faults.

5.4.3 Mutation Score

Mutation score has a fairly high impact on grades, with a relative importance

estimate of ∼4.21%. In addition, mutation score is negatively correlated with

grade delta; improving a suite’s ability to detect mutants also results in more

consistent grading. Like coverage, this is likely due to the property’s ability

to predict the adequacy of a test suite; detecting more mutants will improve a

suite’s ability to detect students’ faults, and therefore produce more consistent

grades. This impact is greater for mutation score than coverage for each of

the subject classes. I will investigate if detecting mutants does indeed improve

a suite’s ability to detect students’ faults in more detail in Chapter 9.
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The mutation score of a test suite has a relatively high impact on grading

consistency, with a greater impact than coverage. Tutors may find mutation

testing to be beneficial in creating quality grading test suites.

5.4.4 Detection Rate of

Other Students’ Faulty Solutions

The detection rate of other students’ faulty solutions has the greatest impact

on grading consistency of any test suite property on average, accounting for

∼4.86% of the variance in grade delta. This metric reflects the true adequacy

of a test suite; its ability to detect students’ faults. Since this metric is

negatively correlated to grade delta, I can conclude that a test suite which

detects more students’ faults will produce more consistent grades.

However, this metric may be hard for tutors to use to improve their test

suites. The metric would allow tutors to understand how many solutions have

faults that are detected, but without manually identifying individual faults

that are present in students’ solutions, but it does not provide information

for unknown faults that are present in students’ solutions; these can only be

identified and understood by using manual analysis. By contrast, artificial

mutants serve as known faults; it would be easier for a tutor to write tests

that target undetected, but known mutants than unobserved students’ faults.

The detection rate of other students’ faulty solutions has the greatest impact

on a test suite’s grading consistency; a test suite capable of detecting more

faults generates more consistent grades. However, this metric is challenging

to use in practice; a tutor would require a set of known existing faulty

solutions to employ the metric.
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5.4.5 Density

Normalised density has the lowest impact on grading consistency of any test

suite property, with a relative importance estimate of ∼1.6, reflecting its lack

of correlation to grade delta. Consequently, I can conclude that the average

proportion of lines that each test in a suite covers has little bearing on the

suite’s ability to generate consistent grades. Instead, other qualities related

to coverage—such as diversity and uniqueness—may be more important.

A test suite’s density typically has little impact on its grading consistency.

5.4.6 Diversity

A test suite’s diversity can have an impact on its grading consistency, repre-

senting ∼2.59 of the variance in grade delta, though this can be attributed

exclusively to DataLoader, where it has the single greatest estimate of any

property for any subject class, 11.27. From this, I can conclude that a test

suite’s diversity typically has almost no impact on grading consistency, except

for in very specific circumstances. It is possible that this effect is related

to how many tests in a sampled suite behave differently, and how well this

sampled suite represents a typically sampled test suite (i.e. generate grades

that are close to the median for each solution). For example, if the typical

sampled test suite only contains tests that each have unique coverage be-

haviour, then test suites which have multiple tests with the same behaviour

will generate grades that differ considerably from the median grade. This

may be especially relevant to DataLoader, since it includes several tests that

cover the same code, by virtue of the specification only defining the use of a

single public method which can be called in a test.

Diversity typically has little impact on grading consistency, but could hold a

considerable effect if a test suite contains a high proportion of similar tests.
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5.4.7 Uniqueness

Uniqueness has a considerable impact on grading consistency, with a relative

importance estimate of ∼4.43%. It is also negatively correlated to grade delta,

indicating that test suites with more unique tests generate more consistent

grades. Uniqueness likely leads to higher grading consistency since low

uniqueness indicates that some aspects of a programming task are evaluated

by every test, solutions with faults in such aspects may be overly punished

by being more likely to be detected than solutions with different faults. High

uniqueness also indicates that every aspect of a program is evaluated at least

once; no fault would be completely uncovered by any test, and would therefore

be more likely to be detected.

Attaining high uniqueness may pose a challenge for tutors however, since it is

possible for a reference solution class to only have a single entry point; this

entry point must be evaluated by every test. This may require some redesign

of the task’s specification and reference solution to avoid this problem, such

as requiring that additional public methods are used. It may be beneficial for

tutors to run an analysis to identify lines or methods that are executed or

missed by every test, such as by adapting and using Perez’s diagnosability

tool [173].

A test suite’s uniqueness has a considerable impact on grading consistency,

though some redesign of a programming task may be required to allow a

high degree of uniqueness to be achieved.

5.5 Conclusion

In this empirical study, I have shown that different test suites can generate

significantly different grades for the same student’s solution, with a standard

deviation of ∼10.1%.

I have also identified that various observable properties of test suites can
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have a significant impact on generated grades, especially mutation score

and uniqueness. Developing a test suite to maximise these properties will

improve the consistency of the grades that it produces. The detection rate of

other students’ faulty solution programs has the greatest impact on grading

consistency, but is difficult to apply in practice, since such existing faulty

solutions may not be available, or known to a tutor.

While both a suite’s mutation score and uniqueness have a significant impact

on grading consistency, in this thesis I will primarily investigate the appli-

cation of mutation testing to improve grading test suites, since it should be

comparatively easy for a tutor to apply mutation testing in the development

of their test suites. I will further investigate how generated mutants relate to

faults in students’ programs. In order to do this, I first need to understand

what programming mistakes students make.





Chapter 6

What Programming Mistakes

Do Students Make?

This chapter is adapted from part of my published work:

Benjamin Clegg, Siobhán North, Phil McMinn, and Gordon Fraser –

“Simulating Student Mistakes to Evaluate the Fairness of Automated

Grading” – International Conference on Software Engineering: Software

Engineering Education and Training Track (ICSE-SEET), 2019 [1]

In my original paper, I only examined mistakes present in my SemOne dataset.

I have extended this analysis to also include my EndOfYear dataset in this

chapter.

6.1 Motivation

In order to investigate the suitability of using mutation analysis to improve

test-based automated grading, I must first understand the mistakes that

students make, since lacking this knowledge will prevent me from identifying

which existing mutation operators and tools may replicate students’ faults,
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and where it may be possible to define new mutation operators for this

purpose.

While existing work has also investigated students’ mistakes, these studies

often have their own limitations. For example, the mistake categories investi-

gated by Brown et al. [23] are derived from previous interviews with tutors [93],

and thus are entirely founded on their beliefs. Since tutors may have gaps in

their TPACK 1, these beliefs may not be entirely accurate; which Brown et

al.’s work reveals. Furthermore, with a few exceptions, most of the mistakes

revealed by their study would be easily detected, since they would prevent

a student’s program from compiling. Knowledge of such severe mistakes

would not necessarily aid the development of grading test suites, since they

would prevent tests from even being executed on a student’s program. McCall

and Kölling’s work on the same dataset (Blackbox) also primarily identifies

students’ faults that prevent their solution programs from compiling, though

they identify many more mistake categories. Keuning et al. also studied this

dataset, instead focusing on code quality issues present in students’ solutions.

However, this study itself is limited by the fact that it only includes mistakes

that are detected by PMD 2 this does not include general style faults that may

be detected by other static analysis tools or manual analysis. This reveals a

wider issue with mistake studies on large datasets; it is only feasible to use

automated analysis techniques due to the incredibly large number of students’

solution programs. This is still an effective means of detecting such mistakes,

or performing a statistically meaningful analysis of their frequencies, but

it may limit one’s ability to understand why a student’s program is faulty.

Similarly, examining test failures alone may not truly reveal why or how

a student has made a mistake; it is possible for several different types of

mistakes to cause the same tests to fail.

In this chapter, I present an alternative analysis of students’ mistakes from

my two datasets. These datasets are much smaller than those used in

the aforementioned prior work. While this limits my ability to draw wide,

statistically significant conclusions from my results, this property does allow

1Technological Pedagogical Content Knowledge, as defined in Chapter 2.3.3
2A static analysis tool that detects code quality issues [102], as discussed in Chapter 2.6.2
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me to perform a manual analysis. This manual analysis provides me with the

opportunity to identify new mistake categories, especially those which can

cause grading tests to fail.

6.2 Methodology

In order to perform this analysis, I first attempted to compile each solution

class, in order to identify any clear compilation errors that are presented by

the compiler’s output messages. I then executed each of the solution classes.

For classes in the EndOfYear dataset, I used the appropriate test suites,

and recorded their results. However, the SemOne dataset does not include

grading test suites. Instead, I used the same input data for every solution

class for each of these assignments, and recorded the command-line output

of each execution. I considered the test results and program output when

performing a manual analysis on each solution class, since this helped me

to identify where functionality mistakes were likely present. In my manual

analysis, I not only considered such functionality mistakes, but also violations

of style conventions, or general code quality issues.

Whenever I encountered any mistake, I classified it to an appropriate mistake

category. If such an issue did not correspond to an existing mistake category,

I described a new mistake category that accurately summarised it. I repeated

the analysis for each of the solutions, in order to check that each of the

newly added mistake categories were correctly identified across every solution.

Furthermore, I also found that some mistake categories could be split into

multiple categories, with each resulting category containing mistakes that

exhibit very similar behaviour. For example, I originally defined a mistake

category as “logic / control flow error”, but found that its mistakes are

better described by splitting it across several subcategories, including “lack

of break/continue statements”, “incorrect order of operations”, and “else

statement matches incorrect if statement.” Some of my identified mistake

categories have few instances in my datasets. I still included these as their

own mistake categories, since they reveal unique mistakes that students can
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make, and which could appear in other datasets.

6.3 Identified Mistakes

In total, I identified 56 mistake categories; 30 that impact the functionality or

correctness of a student’s program, eight that prevent compilation, and 18 style

and code quality flaws. I define these mistake categories in Tables 6.1 & 6.2,

Table 6.3, and Table 6.4, respectively.

I also list the frequencies of these mistake categories in Tables 6.5 & 6.6,

Table 6.7, and Table 6.8. There are qualities of this analysis that are revealed

in these results. First, I found that some mistake categories were not applicable

to every subject class. For example, Board, Queen, and Questions are not

susceptible to students’ solutions using an Incorrect Filename to read input,

since their specification does not require files to be read. Similarly, no solution

for Assignment1 and Assignment2 Modifies Another Class which should not

be modified, since the specifications of these programming tasks only require

the creation and use of a single class each.

For other mistake categories, there are many instances of the mistake for

some subject classes, but very few for others. This is due to some subject

classes simply being more prone to the fault than others, due to requirements

from the task’s specification. One particularly prevalent example of this is

for Does Not Correctly Remove Collection / Array Contents; 43 solutions

for Board exhibit this mistake, whereas it never appears in the other classes.

While solutions for other subject classes do use collections or arrays, only

Board requires for contents to be removed from them in its specification.

In addition, some mistake categories appear rarely, with only a few instances

across either of my datasets. One example of this is for one student’s imple-

mentation of Queen, which has a Mispositioned Break / Continue statement;

a nested for loop has its break statement in the incorrect branch.

Finally, I also observed that some mistakes contribute to others. For example,
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code that Exceeds Range when reading a data structure may do so due to

Incorrect Calculation in defining the range to read.

6.4 Limitations

My manual analysis of these mistakes is subject to some limitations. As with

any manual analysis approaches, it is possible that I have failed to identify

some mistakes; there may be additional mistake categories present in my

datasets, or the frequencies of my mistake observations may be inaccurate. I

attempted to mitigate this by making repeated passes over solutions that I

previously examined after identifying new mistake categories.

Additionally, these mistake observations are unique to my datasets; other

students, either in other cohorts for the course, or those enrolled in different

courses, may make different mistakes, or make mistakes at a different frequency.

This is an inevitable aspect of manual mistake analysis, so I must consider

other courses, students’ solutions, and programming tasks to be out of scope

for the purpose of this analysis.
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Table 6.1: Identified mistake categories that impact the functionality of a
student’s program.

Mistake Category Description

Task-specific
Implementation Flaw

The student’s implementation does not match the specification.

String Misspellings String literals include misspellings.

Incorrect Filename A literal used as a file path is incorrect.

Incorrect Literal A literal value is incorrect.

Missing Output The student’s program does not include sufficient output
(e.g. missing System.out.println()).

Specification Not Fully
Implemented

Parts of the specification are not implemented, e.g. method bodies are empty.

Overeager Input
Validation

The program imposes validation that rejects input which should be accepted.

Insufficient
Exception Handling

Does not catch some exceptions.

Insufficient Validation The program does not validate input sufficiently; bad inputs are accepted.

Exceeds Range
(Loops, Arrays, Strings)

The program attempts to read data outside the range of a data structure.

Flawed Conditional Logic A conditional statement is incorrect. Can be due to incorrect boundary
values, using the wrong comparator, etc.

Empty If Block The block of an if statement is empty.

Incorrect Order of
Operations

Some of the program’s statements are in the incorrect order.

Lack of Branch The program executes some statements unconditionally, when they should
be executed under a particular condition.

Mispositioned
Break / Continue

A break or continue statement is in the wrong location, causing a loop to
end at the incorrect time.

Missing Break / Continue A break or continue statement is missing, preventing a loop from terminating
at the right time.

Does Not Reset Variable The program does not reset a reused variable to its original value when it
should.

Statements in Incorrect
Branch or Outside
Correct Branch

Some statements are in the incorrect branch, or are not in a branch when
they should be.

Initialisation Error A path exists in which the program attempts to read or modify an
uninitialised (null) object, or an object is needlessly reinitialised.

Incorrect Method
Signature

The program implements a method in the specification with the incorrect
parameters.

Incorrect Calculation A calculation in the program is incorrect with respect to the specification.

Type Fault Not casting properly (e.g. integer division).

Incorrect Packaging
(Non-severe)

Some classes are in the incorrect packages, but not severe enough to prevent
compilation.
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Table 6.2: Identified mistake categories that impact the functionality of a
student’s program (continued from Table 6.1).

Mistake Category Description

Incorrect Return Returning incorrect variable, or returning null instead of empty list.

Incorrect Use of Static Methods or variables are static when they should not be.

Missing Public Access
Modifier

A method or member has no access modifier when it should be public.

Does Not Correctly
Remove Collection /
Array Contents

The program fails to remove elements from a Collection (e.g. list.remove())
or set values in an array to null.

Modify Parameter
Variable, Not Local

A method directly modifies one of its parameters, instead of a local copy of
the parameter. This can especially cause issues if the specification requires
the method to be called using a constant as a parameter.

Modification of
Reference, Not Copy

The program modifies a reference to an object rather than a copy, causing
some objects to hold the incorrect data (e.g. lists that should be copies of
another list).

Bad Standard
Library Call

Uses a standard library function improperly.

Table 6.3: Identified mistake categories that prevent a student’s program
from compiling.

Mistake Category Description

Incorrect Classname Incorrect internal class name, or incorrect file name of a class.

Incorrect Packaging
(Severe)

Some classes are in the incorrect packages, preventing compilation when
moved to an autograding environment.

Uncompilable
Dependency Classes

Some of a class’s dependency classes cannot be compiled.

Uses External Libraries The program uses external libraries, violating the specification.

Modifies Another Class The student has modified a class that the specification requires to not be
modified. Their other classes may rely on these incorrect modifications.

Using Class Name as
Identifier Name

The program includes an identifier (e.g. variable) that has the same name as
a class.

Undefined Variable The program attempts to read a variable which is never defined.

Missing Syntax The program lacks some important syntax elements.
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Table 6.4: Identified mistake categories that affect the style / code quality of
a student’s program.

Mistake Category Description

Literal Value Repetition Literal values are repeated instead of using a constant.

Statement Repetition A block of statements is repeated instead of using a method.

Incorrect Identifier Style Identifiers are named incorrectly (e.g. in UpperCamelCase instead of
camelCase).

Poor Identifier Naming Identifiers have names that are uninformative (e.g. a).

Poor Indentation Identation violates code style conventions, or indentation is at different depths
for no valid reason.

Constants Defined as
Variables

Members are defined as variables instead of constants.

Overly Long Lines Lines of code are over 100 characters wide.

Few Useful Comments The program requires more, informative code comments.

Unnecessary Variables Variables are defined that are never used.

Inefficient Code The student’s program is inefficient (e.g. unnecessary loop iterations,
unneeded operations).

Lacks Annotation Tags The program lacks annotation tags (e.g. @Override for methods that are
defined in a super-class)

Inconsistent / Poor
Whitespace

The student uses whitespace (e.g. spaces and empty lines) inconsistently, too
little, or too much, at a detriment to readability.

Unnecessary While Loops The student’s program uses while loops where for loops or recursion are more
appropriate.

Unnecessary Method
Declarations

The program includes a method that does not serve any purpose; it does
not improve readability, meaningfully perform a specific action, nor reduce
repetition.

If-Else Instead of
Switch-Case

The program uses a long if-else structure, instead of using a switch-case.

Poor Type Choice e.g. String instead of boolean, or Double instead of double. (Excludes not
using an enum.)

Lack of Enums / Improper
Use of Enums

Does not use enums, or queries enums in an improper way (e.g. comparing
its name to a String).

Complex / Inefficient
Control Flow

Control flow is needlessly complex, increasing risk of mistakes
(e.g. using counters and booleans with conditionals instead of a
break/continue or methods).
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Table 6.5: Frequencies of mistakes that impact the functionality / correctness
of solution programs.

Mistake Category Frequency

SemOne EndOfYear

Assignment1

Assignment2

Board

Queen

Cellar

DataLoader

Questions

Task-specific
Implementation Flaw

0 0 2 1 5 3 9

String Misspellings 6 0 0 0 0 0 0

Incorrect Filename 1 2 NA NA 0 0 NA

Incorrect Literal 4 7 0 0 4 0 7

Missing Output 6 3 0 0 1 0 0

Specification Not Fully
Implemented

2 3 7 7 4 0 5

Overeager Input
Validation

3 0 1 0 0 0 1

Insufficient Exception
Handling

0 0 0 0 2 38 5

Insufficient Validation 0 3 0 2 18 37 3

Exceeds Range
(Loops, Arrays, Strings)

3 4 0 8 3 11 3

Flawed Conditional Logic 0 0 1 5 4 1 1

Empty If Block 0 0 0 0 0 0 1

Incorrect Order of
Operations

0 0 2 0 1 0 1

Lack of Branch 1 0 0 1 0 0 0

Mispositioned
Break / Continue

0 0 0 1 0 0 0

Missing Break / Continue 0 0 0 5 0 0 1

Does Not Reset Variable 0 0 0 0 0 0 1

Statements in Incorrect
Branch or Outside
Correct Branch

0 0 1 1 1 0 1

Initialisation Error 0 0 1 0 1 0 1

Incorrect Method
Signature

NA NA 2 0 0 0 0

Incorrect Calculation 21 13 0 6 3 0 13

Type Fault 0 0 0 0 0 0 1

Incorrect Packaging
(Non-severe)

0 0 2 2 0 1 0
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Table 6.6: Frequencies of mistakes that impact the functionality / correctness
of solution programs (continued from Table 6.5).

Mistake Category Frequency

SemOne EndOfYear

Assignment1

Assignment2

Board

Queen

Cellar

DataLoader

Questions

Incorrect Return 0 0 1 24 1 0 1

Incorrect Use of Static NA NA 5 0 0 1 0

Missing Public Access
Modifier

NA NA 0 0 3 0 0

Does Not Correctly
Remove Collection /
Array Contents

0 0 43 0 0 0 0

Modify Parameter
Variable, Not Local

0 0 0 0 1 0 0

Modification of
Reference, Not Copy

0 0 0 0 3 0 0

Bad Standard
Library Call

0 0 0 0 1 0 2

Table 6.7: Frequencies of mistakes that prevent the compilation of solution
programs.

Mistake Category Frequency

SemOne EndOfYear

Assignment1

Assignment2

Board

Queen

Cellar

DataLoader

Questions

Incorrect Classname 3 4 0 0 0 0 0

Incorrect Packaging
(Severe)

0 0 2 2 3 2 1

Uncompilable
Dependency Classes

NA NA 7 11 0 0 0

Uses External Libraries 0 0 4 6 0 0 0

Modifies Another Class NA NA 2 3 0 1 2

Using Class Name as
Identifier Name

0 0 1 0 0 0 0

Undefined Variable 0 0 1 1 0 0 0

Missing Syntax 2 1 0 0 0 0 0



6.4. LIMITATIONS 137

Table 6.8: Frequencies of mistakes that impact the style / code quality of
solution programs.

Mistake Category Frequency

SemOne EndOfYear

Assignment1

Assignment2

Board

Queen

Cellar

DataLoader

Questions

Literal Value Repetition 55 45 37 23 25 22 25

Statement Repetition 44 34 3 48 34 22 34

Incorrect Identifier Style 15 20 5 6 9 8 8

Poor Identifier Naming 5 13 17 10 12 12 7

Poor Indentation 20 31 10 18 17 10 8

Constants Defined as
Variables

9 31 1 0 1 4 0

Overly Long Lines 22 17 6 21 37 37 39

Few Useful Comments 3 2 19 8 7 12 18

Unnecessary Variables 1 0 5 42 18 3 6

Inefficient Code 13 18 21 3 5 3 5

Lacks Annotation Tags NA NA 0 51 21 2 1

Inconsistent / Poor
Whitespace

6 9 19 13 21 15 11

Unnecessary While Loops 12 1 0 20 20 17 10

Unnecessary Method
Declarations

0 0 2 29 1 3 1

If-Else Instead of
Switch-Case

NA 39 1 2 10 6 1

Poor Type Choice 0 2 1 0 6 0 1

Lack of Enums / Improper
Use of Enums

NA 57 0 0 3 0 0

Complex / Inefficient
Control Flow

2 1 0 6 0 0 0





Chapter 7

Deriving Mutation Operators

From Students’ Mistakes

As with the previous chapter, this chapter is adapted from my published

work:

Benjamin Clegg, Siobhán North, Phil McMinn, and Gordon Fraser –

“Simulating Student Mistakes to Evaluate the Fairness of Automated

Grading” – International Conference on Software Engineering: Software

Engineering Education and Training Track (ICSE-SEET), 2019 [1]

I have extended my previous work, by investigating more existing mutation

operators to match my new mistake categories, and define additional new

mutants to simulate functionality mistakes.

7.1 Motivation & Methodology

Since I aim to apply mutation testing to simulate students’ mistakes, I must

first consider how mutation operators introduce artificial faults, and how this

corresponds to the mistakes that students make. In this chapter, I investigate
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which existing mutation operators have the potential to simulate students’

mistakes that impact functionality. In order to achieve this, I evaluate each

of my identified mistake categories in turn, and identify which operators in

two existing mutation tools—Pit and Major—adequately capture the faults

which each given mistake category captures.

I also identify which students’ mistakes cannot be fully associated with existing

operators. For this group of unmatched mistakes, I define new mutation op-

erators, with the aim of simulating these mistakes where possible. I approach

this operator construction by considering how the students’ mistakes manifest,

using my observations to define a rule that emulates their introduction into

an otherwise correct program.

Table 7.1 provides a summary of the existing matching operators that I

identify, alongside the new operators that I define for each mistake category.

7.2 Out of Scope Mistakes

First, I note that some mistake categories have unique properties which

hinder the definition of associated mutation operators. I consider these

mistake categories to be out of scope with regards to mutation testing and

analysis, primarily due to infeasibility:

• Task Specific Implementation Flaw: Such mistakes are specific to unique

aspects of a given programming assignment’s specification. These

mistakes would each need their own unique mutation operator, which

targets a specific misconception about an aspect of a task’s specification

or how it should be implemented.

• Overeager Input Validation: This would require a mutation operator

to capture the valid domain of an arbitrary input according to a task’s

specification, and add a check that this input is within a small subset

of this domain.
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Table 7.1: Overview of mutation operators for each of my mutation classes,
including whether existing mutation operators should simulate the mistakes.
New operators are displayed in italics.

Mistake Category
Existing
Operators?

Operator(s)

Task-specific
Implementation Flaw

No Out of Scope

String Misspellings &
Incorrect Filename

Yes (Major) Literal Value Replacement;
(New) String Misspelling

Incorrect Literal Yes (Major) Literal Value Replacement;
(Pit) Constant Replacement

Missing Output Yes (Pit & Major) Statement Deletion
Specification Not Fully
Implemented

Partial (Pit & Major) Statement Deletion; (Pit) Null, Default &
Empty Return; (New) Multiple Statement Deletion

Overeager Input
Validation

No Out of Scope

Insufficient Exception
Handling

Partial (Pit & Major) Statement Deletion;
(New) Targeted Statement Deletion - Exception Throwing;
(New) Try Extraction

Insufficient Validation Yes (Pit) Remove Conditionals
Exceeds Range
(Loops, Arrays, Strings)

Partial (Pit) Conditionals Boundary; (Pit) Remove Conditionals;
(New) Iterator Advancement

Flawed Conditional Logic Yes (Pit) Conditionals Boundary; (Pit) Negate Conditionals
Empty If Block Yes (Pit) Remove Conditionals
Incorrect Order of
Operations

No (New) Statement Transpose

Lack of Branch Yes (Pit) Remove Conditionals
Mispositioned
Break / Continue

Partial (Pit) Remove Conditionals; (New) Statement Transpose;
(New) Partial Targeted Branch Extraction;
(New) Partial Targeted Branch Nesting

Missing Break / Continue Yes (Pit & Major) Statement Deletion;
(New) Targeted Statement Deletion - Break / Continue

Does Not Reset Variable Yes (Pit & Major) Statement Deletion
Statements in Incorrect
Branch or Outside
Correct Branch

No (New) Branch Extraction;
(New) Branch Nesting;
(New) Partial If-Else Block Switch

Initialisation Error Partial (Pit) Experimental Member Variable Mutator;
(New) Remove Variable Initial Value;
(New) Re-Initialise Variable

Incorrect Method
Signature

No (New) New Parameter Creation

Incorrect Calculation Yes (Pit) Math; (Major) Arithmetic Operator Replacement
Type Fault No (New) Remove Casts
Incorrect Packaging
(Non-severe)

No Out of Scope

Incorrect Return Yes (Pit) Null, Default & Primitive Returns
Incorrect Use of Static No (New) Add Static Modifier
Missing Public Access
Modifier

No (New) Remove Public Access Modifier

Does Not Correctly
Remove Collection /
Array Contents

Partial (Pit & Major) Statement Deletion;
(New) Targeted Statement Deletion - Collection /
Array Removal Calls

Modify Parameter
Variable, Not Local

No (New) Parameter Reassignment Removal

Modification of
Reference, Not Copy

Partial (Pit) Experimental Argument Propagation;
(New) Replace Object Copy with Reference

Bad Standard
Library Call

No Out of Scope
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• Incorrect Packaging (Non-severe): The most common manifestation of

this fault that I observed is students’ classes not importing classes that

are required by the specification, but which excluding does not prevent

the program from compiling. In such cases, the student’s program

does not use any of the specification-mandated classes. A mutation

operator that replicates such faults must delete an import statement,

then either replace it with an import of another class, or remove calls

to the deleted import. Producing compilable code from either of these

options is unfeasible; for the first, the operator would have to synthesise

an entire class to import that implements the same methods as the

originally imported class. For the second, calls to a class defined by

the specification are likely important, and removing them would likely

generate uncompilable code.

• Bad Standard Library Call: While it may be trivial to implement a

mutation operator to simulate some incorrect standard library calls,

implementing a mutation operator that targets every possible improper

call of Java’s standard library is unfeasible; Java includes many classes,

each of which contains multiple methods which may be used in several

uniquely incorrect way. Targeting only a subset of these classes and

methods introduces another problem; determining which classes and

methods to target without introducing bias.

7.3 Existing Operators

I observe that some existing mutation operators would produce mutants that

either fully or partially simulate students’ programming mistakes [143,144],

as detailed in Table 7.1:

• (Major) Literal Value Replacement & (Pit) Constant Value Replacement:

Replace literal values with a predefined default.

• (Pit & Major) Statement Deletion: Delete a single statement from the
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program.

• (Pit) Null, Default, Empty & Primitive Return Modification Operators:

Modify the return value of a method, by replacing it with a predefined

value, according to the specified operator.

• (Pit) Remove Conditionals: Remove a conditional statement from a

control flow statement. For example, replace if (a == b) with if

(true) [144].

• (Pit) Conditionals Boundary: Replace a comparator with an alternate

boundary, e.g. > to >=.

• (Pit) Negate Conditionals: Modify a comparator to its strict inverse,

e.g. == to !=, or < to >=.

• (Pit) Experimental Member Variable Mutator: Replaces a variable

assignment. For primitives, the assignment is replaced with a default

“empty” value, such as 0.0, and for objects it is replaced with null.

• (Pit) Math & (Major) Arithmetic Operator Replacement: Replace op-

erators used in mathematical calculations, effectively simulating an

incorrect calculation.

• (Pit) Experimental Argument Propagation: Replace a method call with

one of its parameters that shares the same type as the original method’s

return value. For example, sum(a, b) would be replaced with a.

7.4 New Operators

I also find that some mistake categories are not emulated by existing mutation

operators at all. Other mistake categories are only partially emulated by

existing operators, with such partially matching operators being unable to

simulate some manifestations of these mistakes. For both of these cases, I

have defined new mutation operators to simulate such mistake categories, as

summarised in Table 7.1:
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String Misspelling Apply a small change to a string literal, to simulate

simple spelling errors. This includes swapping two neighbouring characters,

deleting characters, or replacing characters with another selected at random.

I also note that an implementation of this operator should have a generation

budget; this would entail randomly selecting a given number of possible

mutated strings for each string literal in a reference program.

String s = "hello";

(a) Original

String s = "helol";

(b) Mutated

Figure 7.1: Example application of String Misspelling

Multiple Statement Deletion Similar to the existing Statement Deletion

operator, except that it deletes more than one statement. This operator

targets a given statement in the program; for example, the operator may be

called on each statement sequentially, with each target statement generating

a set of mutants. For a given target statement, the operator will generate a

mutant by deleting the statement and one or more statements within the same

block that succeed it. This is repeated such that every possible mutant that

deletes a different number of statements is generated for the target statement.

int a = 2;

int b = 4;

int c = a + b;

(a) Original

int a = 2;

(b) Mutated

Figure 7.2: Example application of Multiple Statement Deletion, targeting
the statement int b = 4;

Targeted Statement Deletion This operator is effectively equivalent to

statement deletion, but specifically targets particular statements in order to

provide a tutor with more clear information on what the unkilled mutant

represents. In particular, I propose an operator to target three specific cases:
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exception throwing, break / continue statements, and collection / array

element removal calls.

if (badThing) {

throw new

RuntimeException();

}

(a) Original

if (badThing) {

}

(b) Mutated

Figure 7.3: Example application of Targeted Statement Deletion (Exception
Throwing)

for (int i : values) {

a = i;

if (i > b) {

break;

}

}

(a) Original

for (int i : values) {

a = i;

if (i > b) {

}

}

(b) Mutated

Figure 7.4: Example application of Targeted Statement Deletion (Break
Statement)

String[] array =

{"a", "b", "c"};

array[1] = null;

(a) Original

String[] array =

{"a", "b", "c"};

(b) Mutated

Figure 7.5: Example application of Targeted Statement Deletion (Array
Element Removal)

Try Extraction Extract the contents of a try block, to simulate exceptions

not being handled correctly. This operator can produce uncompilable mutants
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if a called method can throw a “checked” exception that must be handled.

It may be possible to mitigate this by adding a try/catch block higher in a

program’s call graph, but this would greatly increase the complexity of the

mutant’s implementation, and may not be necessary; uncompilable mutants

are naturally excluded from mutation testing and analysis, since they are

never executed.

try {

possiblyUnsafeMethod();

} catch (Exception e) {

...

}

(a) Original

possiblyUnsafeMethod();

try {

} catch (Exception e) {

...

}

(b) Mutated

Figure 7.6: Example application of Try Extraction

Iterator Advancement Duplicate a next() call of an object. This may

force an iterator overflow when the last item of the iterator is encountered, or

for the incorrect value within an iterator to be assigned to a variable.

while (iterator.hasNext()) {

a += iterator.next();

}

(a) Original

while (iterator.hasNext()) {

a += iterator.next();

a += iterator.next();

}

(b) Mutated

Figure 7.7: Example application of Iterator Advancement
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Statement Transpose Swap the order of two neighbouring statements.

a = 4;

a++;

int c = a + b;

(a) Original

a++;

a = 4;

int c = a + b;

(b) Mutated

Figure 7.8: Example application of Statement Transpose

Branch Extraction For a given if statement, move the statements that

belong to its branch to immediately before or after the if statement. This

operator can also be applied to an else statement instead. I also define a

targeted variant of this for only the break and continue statement inside an

if or else block, to specifically modify control flow.

if (c) {

a--;

b++;

}

int c = a + b;

(a) Original

if (c) {

}

a--;

b++;

int c = a + b;

(b) Mutated

Figure 7.9: Example application of Branch Extraction
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Branch Nesting The reverse of Branch Extraction; statements are moved

from a block of code to a branch within it. For this operator, the statements

before or after a selected branching statement are moved. As above, I define

a targeted variant for break and continue control flow.

a--;

if (c) {

b++;

}

int c = a + b;

(a) Original

if (c) {

a--;

b++;

}

int c = a + b;

(b) Mutated

Figure 7.10: Example application of Branch Nesting

Partial If-Else Block Switch Selects a series of statements within each

block of an if-else statement, and moves them to the other block. Every

possible number of selected statements to move for each branch is selected.

In addition, the operator supports moving statements from only one block

to the other. The entire block is not swapped however, since that would be

equivalent to inverting the conditional, which is already supported by existing

operators.

if (c) {

a++;

b = 3;

} else {

a = 4;

b--;

}

(a) Original

if (c) {

a++;

b--;

} else {

a = 4;

b = 3;

}

(b) Mutated

Figure 7.11: Example application of Partial If-Else Block Switch
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Remove Variable Initial Value As the name suggests, the initial value

of a variable declaration is removed, simulating the access of an uninitialised

variable.

double n = 11.2;

(a) Original

double n;

(b) Mutated

Figure 7.12: Example application of Remove Variable Initial Value

Re-Initialise Variable Reassign a variable to its initial value / object

immediately before the variable is referenced.

int a = 4;

a++;

int c = a + b;

(a) Original

int a = 4;

a++;

a = 4;

int c = a + b;

(b) Mutated

Figure 7.13: Example application of Re-Initialise Variable

New Parameter Creation Add an extra parameter to a method dec-

laration, and add a default value for this parameter to every call to the

method.

public int subtract(int a,

int b) { ... }

...

int v = subtract(5, 4);

(a) Original

public int subtract(int a,

int b, int c) { ... }

...

int v = subtract(5, 4, 1);

(b) Mutated

Figure 7.14: Example application of New Parameter Creation
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Remove Casts Remove casts from an expression.

int a = 3;

int b = 5;

double c = (double) a /

(double) b;

(a) Original

int a = 3;

int b = 5;

double c = a / b;

(b) Mutated

Figure 7.15: Example application of Remove Casts

Add Static Modifier Add the static modifier to a member variable or

method.

public int count = 0;

(a) Original

public static int count = 0;

(b) Mutated

Figure 7.16: Example application of Add Static Modifier

Remove Public Access Modifier Remove the public access modifier

from a member variable or method.

public int count = 0;

(a) Original

int count = 0;

(b) Mutated

Figure 7.17: Example application of Remove Public Access Modifier
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Parameter Reassignment Removal Remove a variable in a method that

is initialised with the value of a parameter, and replace references to this

variable with the original parameter.

public int aMethod(int

param) {

int a = param;

a++;

return param;

}

(a) Original

public int aMethod(int

param) {

param++;

return param;

}

(b) Mutated

Figure 7.18: Example application of Parameter Reassignment Removal

Replace Object Copy with Reference Replace a new object created by

copying an existing object (e.g. a method call such as object.clone(), or

creating a new object such as new ArrayList<>(object)) with a reference

to the original object itself. For most (non-primitive) objects, this will cause

values of the original object to be modified, potentially modifying the state

elsewhere in the program.

List<String> list = new

ArrayList<>(originalList);

list.add("value");

(a) Original

List<String> list =

originalList;

list.add("value");

(b) Mutated

Figure 7.19: Example application of Replace Object Copy with Reference
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7.5 Operators for Compilation &

Style Mistakes

It is also possible to define operators that aim to specifically simulate mistakes

that impact compilation or code style. I present examples of such operators

in the first paper that I published in this research project [1]. However, such

students’ mistakes can be identified using static analysis tools, or by evaluating

compiler error messages [76,192]. Therefore, I consider these operators out of

scope for this thesis, since such mistakes can already be detected via these

generalised approaches; using such operators would not aid tutors in detecting

more programming mistakes made by students. By contrast, since grading

test suites are unique to their respective programming tasks, mutants that

simulate functionality faults can provide tutors with valuable information to

improve fault detection in grading.

7.6 Conclusion

In this chapter, I have defined new mutants to replicate most of the mistakes

that I found introductory programming students to make in Chapter 6, as

shown in Table 7.1. However, simply defining mutation operators does not

allow them to be generated from real programs, such as reference programming

assignment solutions. In the next chapter, I detail my implementation of

these mutation operators in a prototype mutation tool.



Chapter 8

MutaGen: Implementing

Mutation Operators

8.1 Introduction

In order to evaluate my new mutation operators via empirical study, I must

first create tangible mutants via these operators for the reference solutions

of my subject classes. While manually seeded mutants can be used for such

studies, they can behave differently to generated mutants [115]. Instead, I

opt for an automated approach, since I can yield a large quantity of mutants

with little effort. I have implemented each of my mutation operators as a

prototype mutation tool, MutaGen (Mutant Generator) [193]. In this chapter,

I discuss my approach to implementing these operators, and the challenges

involved in creating an effective mutation tool.

8.2 General Program Operation

Upon execution, my tool reads a subject class’s reference solution, and stores

it in memory. My tool then executes each enabled mutation operator on the

153
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solution’s code. Each of these operators generates every applicable mutant

from the original source code, not the class’s compiled bytecode. Finally, my

tool saves a Java source file for each mutant to their own labelled subdirectory.

I can later compile and execute these mutants independently, such as by

using an automated grading tool. This overall process is fairly simple and

intuitive; the challenge lies in implementing my operators, which often require

knowledge of the class’ structure and the context of a mutation target.

8.3 Abstract Syntax Tree Manipulation

One means of processing the structure of a Java class is by evaluating and

manipulating its abstract syntax tree (AST), using the JavaParser library [194].

JavaParser converts Java source code to an AST, in which every syntax

component of the code is represented as a node in a tree, with different

types of components (e.g. arithmetic expressions, assignment statements,

and blocks of code) each having their own associated node type. JavaParser

implements the functionality to evaluate and modify this AST, which I use

in MutaGen to implement complex, context-aware mutation operators.

8.4 Operator Implementation Example

In this example, I will demonstrate how I used AST manipulation to implement

my Remove Casts operator. This operator should remove every cast from

a particular expression. For example, (double) a / (double) b within

a variable assignment expression would be mutated to a / b. Figure 8.1

presents my implementation of this operator. Figures 8.2 & 8.3 show the

abstract syntax tree representations of the expression, before and after the

operator is applied.

JavaParser uses the visitor design pattern to process an AST. The visitor

explores each node of the AST in turn, and runs its visit method with the
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@Override

protected void visitorSetup() {

// Set up the AST visitor

visitor = new VoidVisitorAdapter() {

@Override

public void visit(ExpressionStmt n, Object arg) {

super.visit(n, arg);

// Generate a mutant from the visited ExpressionStmt

generateMutant(n);

}

};

}

private void generateMutant(ExpressionStmt exprStmt) {

// Copy the original statement to prevent direct modification

ExpressionStmt modifiedStmt = exprStmt.clone();

// Identify cast expressions in the ExpressionStmt’s subtree

List<CastExpr> castExprs = findCastExprs(modifiedStmt);

if (castExprs.isEmpty())

return;

// Replace every cast expression with its subexpression

for (CastExpr c : castExprs) {

c.replace(c.getExpression());

}

// Create a mutant object to store the changes that are made

addMutant(new ASTMutant(

this.getOriginal().getCompilationUnit(),

exprStmt,

modifiedStmt,

this.getType())

);

}

private List<CastExpr> findCastExprs(ExpressionStmt exprStmt) {

return exprStmt.findAll(CastExpr.class);

}

Figure 8.1: Implementation of my Remove Casts operator.
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Expr essi onSt mt
doubl e r es = ( doubl e)  a /  ( doubl e)  b;

Var i abl eDecl ar at or
r es = ( doubl e)  a /  ( doubl e)  b

Bi nar yExpr
( doubl e)  a /  ( doubl e)  b

Si mpl eName
" r es" [ oper at or  = DI VI DE]

[ i ni t i al i ser ][ name]

Cast Expr
( doubl e)  a

Cast Expr
( doubl e)  b

Pr i mi t i veType
doubl e

Pr i mi t i veType
doubl e

NameExpr
a

NameExpr
b

Si mpl eName
" a"

Si mpl eName
" b"

. . .

Pr i mi t i veType
doubl e

[ t ype]

[ l ef t ] [ r i ght ]

[ t ype] [ expr essi on] [ expr essi on]

Figure 8.2: Abstract syntax tree representation of the variable declaration
of res, with (double) a / (double) b as its initialiser, before the Remove
Casts operator is applied.

current node as a parameter. This method is polymorphic; the particular

visit method that has a parameter matching the node’s type is executed.

In this operator, I target ExpressionStmt nodes, with the visitor calling

my generateMutant method on the matching node. The visitor design

pattern calls this method once in isolation for each ExpressionStmt in the

reference class. I target these ExpressionStmt nodes instead of CastExpr

nodes directly, since my operator should remove every cast expression that is

present in a single expression to generate a single mutant, rather than only

one cast expression.
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Expr essi onSt mt
doubl e r es = a /  b;

Var i abl eDecl ar at or
r es = a /  b

Bi nar yExpr
a /  b

Si mpl eName
" r es" [ oper at or  = DI VI DE]

[ i ni t i al i ser ][ name]

NameExpr
a

NameExpr
b

Si mpl eName
" a"

Si mpl eName
" b"

. . .

Pr i mi t i veType
doubl e

[ t ype]

[ l ef t ] [ r i ght ]

Figure 8.3: Abstract syntax tree representation of the modification that the
Remove Casts operator makes to Figure 8.2.

The first step of my mutation procedure is to copy the matched node. If the

node is not copied, any modifications made to the node (or its children) will

not only be applied to the mutant under generation, but to the original AST;

such changes would also be applied to future mutants.

The next step of my mutation rule is to identify every CastExpr within the

ExpressionStmt, in order to determine which nodes must be removed from

the expression. Should no casts be present, the method simply returns, since

no mutant can be generated. Otherwise, the next step is to remove each of

these identified casts. In order to do this, I replace the CastExpr with its

associated expression. This seems counter-intuitive at first glance, but in

reality the AST is structured such that a CastExpr (e.g. (double) a) has

two components; the type (double), and the expression to cast (a). Replacing

the CastExpr with its associated expression is equivalent to removing the cast
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((double)) itself; removing the entire node would also delete the originally

casted expression instead.

Finally, as with each of my operators, I create a Mutant object that details

the changes that have been made. When storing the mutant as a source file,

MutaGen uses JavaParser to reconstruct the class’s source code, supplying it

with these modified nodes in place of the original nodes.

8.5 Limitations

MutaGen does have some limitations in its application. First, like every

mutation tool, it is not immune to the equivalent mutant problem; it is

possible for the tool to generate mutants that are semantically equivalent to

the original program. When using MutaGen’s mutants in my experiments, I

manually inspect each mutant that passes every test, and remove any that

are indeed equivalent.

Since my mutation operators tend to introduce significant changes to the

program, some mutants generated by MutaGen can be uncompilable. Fortu-

nately, this issue is easy to resolve; I use an automated compilation and test

execution procedure via Gradeer, which allows me to automatically remove

any mutants that cannot compile, so these mutants are excluded from my

experiments.

Finally, since I conduct my studies on individual subject classes, I only

designed MutaGen to support the mutation of an individual class in isolation.

It is possible to extend MutaGen to support the mutation of multiple classes

from a single program, but this would incur a significant time cost, and would

not benefit my experiments.
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Table 8.1: Mutants generated by MutaGen.

Subject Class
Mutants

Total Non-Equivalent Unkilled Non-Equivalent
Board 23 21 1
Queen 79 70 0
Cellar 421 342 39
DataLoader 108 94 2
Questions 330 295 0

Table 8.2: Comparison of the proportion of mutants generated by each tool
that are equivalent, to 3 s.f.

Subject Class
Proportion of Equivalent Mutants (%)
Major MutaGen Pit

Board 7.02 8.70 13.7
Queen 2.13 11.4 9.33
Cellar 18.0 18.8 16.3
DataLoader 6.81 13.0 15.4
Questions 5.53 10.6 10.7
Mean 7.90 12.5 13.1

8.6 Generated Mutants

As with Major and Pit, I generated mutants from the reference solutions of

my EndOfYear dataset using MutaGen, which I summarise in Table 8.1. I

identified and removed equivalent mutants in the same manner as I describe

in Chapter 3.4.

Equivalent mutants introduce a time cost of manual analysis to mutation

testing; tools which generate fewer equivalent mutants would be easier to

apply to evaluate the adequacy of a test suite. Therefore, I compare the

proportion of equivalent mutants that are generated by each tool, as shown in

Table 8.2. I find that MutaGen and Pit (with all operators enabled) produce

a similarly high proportion of equivalent mutants, at 12.5% and 13.1%,

respectively. By contrast, Major, which only implements simple mutation

operators, generates considerably fewer equivalent mutants proportionally

(7.90%). This suggests that simpler mutation operators are less prone to

generating equivalent mutants than more complex operators. This is counter-

intuitive, but is likely primarily due to particular operators. For example, my

Statement Transpose operator can produce valuable faulty mutants in some

cases, but it is possible that the order of some statements has no bearing on
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a program’s correctness.

8.7 Conclusion

I have successfully implemented my new mutation operators as a prototype

mutation tool, MutaGen. These operators, which aim to replicate students’

programming mistakes, manipulate the abstract syntax tree of a program to

generate mutants. MutaGen does generate a greater proportion of equivalent

mutants than Major, which only implements simple mutation operators,

but these represent the minority of generated mutants; the vast majority of

MutaGen’s mutants can be applied to evaluate the adequacy of a grading

test suite.

The source code of MutaGen is available at https://github.com/ben-

clegg/mutagen [193].

https://github.com/ben-clegg/mutagen
https://github.com/ben-clegg/mutagen


Chapter 9

Evaluating the Suitability of

Mutation Operators to Simulate

Students’ Mistakes

This chapter is based upon my published work:

Benjamin Clegg, Phil McMinn, and Gordon Fraser – “An Empirical

Study to Determine if Mutants Can Effectively Simulate Students’ Pro-

gramming Mistakes to Increase Tutors’ Confidence in Autograding” –

ACM Technical Symposium on Computer Science Education (SIGCSE),

2021 [3]

This chapter expands upon my published work, featuring updated data and

additional experiments.

9.1 Introduction

While existing work has shown that mutants are a valid substitute for real

faults in software projects when assessing a test suite’s quality [26,28], there

161
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has been little investigation into whether this holds for evaluating a tutor’s

test suite’s ability to detect faults in students’ programs. Such supporting

evidence is necessary to support the use of mutation testing and analysis to

improve tutors’ grading test suites. Accordingly, in this chapter I conduct an

empirical study to investigate the effectiveness of artificial mutants in simulat-

ing students’ faulty programs, using mutants generated by both existing tools

and my prototype mutation tool, MutaGen. I aim to address six research

questions:

RQ1: Are mutants coupled to students’ faults? I first investigate how

the coupling effect—a core principle of mutation testing—relates to artificial

mutants and students’ faulty programs. The coupling effect dictates that if a

test suite is capable of detecting simple faults, it should also detect complex

faults [113]. In the context of test-based automated grading, artificial mutants

are such simple faults, and students’ faults represent complex faults. However,

due to practical limitations, I cannot isolate individual faults within students’

programs. Accordingly, I investigate whether mutants are coupled to students’

faulty programs. By showing that the coupling effect holds for mutants and

students’ programs, I can conclude that mutation testing can be applied to

inform the development of grading test suites.

RQ2: Does MutaGen improve fault simulation? MutaGen implements

my new mutation operators that specifically aim to simulate students’ faults.

Mutants generated by MutaGen should couple to students’ faulty solutions

which are not coupled to mutants generated by existing tools. I manually

investigate how MutaGen’s mutants can simulate students’ faults, and analyse

the mutants of each tool using a new coupling approach.

RQ3: Do mutants sufficiently capture the subtlety of students’

faults? The coupling effect reveals that mutants can cause the same tests

to fail as students’ faults, but does not necessarily reveal that mutants are

sufficiently subtle to inform the development of a test suite that can isolate
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individual students’ faults. Accordingly, I also consider probabilistic coupling,

Chen et al.’s metric for how sensitive test goals are with respect to real

faults [27]. This allows me to determine how closely the most representative

mutant aligns with a student’s faulty solution.

RQ4: Is mutation score analogous to real fault detection? I perform a

simple correlation analysis of mutation score and the detection rate of students’

faulty solutions for sampled test suites. A strong correlation between mutation

score and the fault detection rate would suggest that increasing a suite’s

mutation score by adding more tests will improve its ability to detect students’

faulty solutions. However, there are some limitations to this approach, such

as the influence of other test suite properties which are correlated with both

observations, such as the number of tests [27]. Consequently, I use the suite

growth approach proposed by Chen et al. [27] to generate test suites, guided

by adding tests that kill additional mutants. I also generate another set of

test suites with random sampling to use as a baseline; the test suite is grown

by adding a previously unselected test at random. I then compare how many

students’ faulty solutions are detected by these two groups of test suites; if

mutation analysis is effective, a test suite guided by killing mutants will detect

more students’ faulty solutions than a test suite of the same size that was

generated by random sampling.

RQ5: How do mutation score and code coverage compare in their

effectiveness as adequacy metrics? I include coverage as an alternate

test goal to guide a suite growth analysis to directly compare the adequacy

performance of a suite’s code coverage and mutation score. I also consider

how using both code coverage and mutants to improve a suite influences its

adequacy.

RQ6: Which mutation tool produces mutants that best represent

students’ faults? I further extend my suite growth analysis to compare

the mutants generated by each mutation tool.
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9.2 Experiment Procedure

In this chapter, I will outline the methodology that I employ in this empirical

study. I use my EndOfYear dataset throughout this study.

9.2.1 Coupling

If a set of simple faults are detected by a test that also detects a complex fault,

the complex fault is coupled to the simple faults. Existing work on coupling

uses individual known faults to evaluate the coupling effect [28]. However,

it is possible (and likely) that faulty students’ solutions contain multiple

complex faults; students’ solutions cannot be considered as individual faults.

It is therefore not sufficient for only one test that fails on a student’s faulty

solution to also fail on a mutant, as this would only show that the solution

contains a coupled fault; it may also contain other uncoupled faults. While it

may be possible to isolate individual faults in each student’s program, and

construct a series of pseudo-solutions that each only contain one fault, this

would be intractable in practice. Instead, for RQ1, I perform my coupling

analysis on each individual failing test of each faulty solution. For each faulty

solution, I identify the failing tests. For each failing test, I determine if the

solution is coupled with any mutants; i.e. the test also detects at least one

mutant. If the solution is coupled with any mutants for this test, I define the

test as a coupling test. Otherwise, I define it as an uncoupling test.

I use these observations to calculate the coupling ratio for each faulty solution,

the proportion of coupling tests to failing tests for the solution. This allows

me to determine to what extent a solution’s faults are coupled to the available

mutants. If a solution has a coupling ratio of > 0, it has at least one coupling

test; it is partially coupled to the mutants, as it has at least one fault that

is coupled to at least one mutant. If all of a solution’s tests either pass or

are coupling (coupling ratio = 1), then it is absolutely coupled to a set of

mutants; every detected fault in the solution is coupled to at least one mutant.

In my results (Table 9.1), I show the mean coupling ratio for each subject
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class.

I find that for some subject classes, some generated mutants fail on every

test. For example, some mutants cause an exception to be thrown when

calling a class’s constructor; executed tests immediately fail. I removed these

trivially detected mutants prior to running my coupling analysis for RQ1,

since they would introduce bias by being coupled to every fault in each

student’s solution. This procedure does pose a challenge for some students’

faulty solutions, however; some solutions have a severe fault that causes every

test to fail, including tests which only fail due to such severe faults. For such

solutions, only trivial mutants can couple to them, though some of these may

be coupled for entirely unrelated reasons. However, some of my operators

which I have implemented in MutaGen directly simulate some of these severe

faults. Therefore, for RQ2, I manually analyse faulty solutions that are

otherwise uncoupled for this reason, and compare them to the trivial mutants,

in order to determine if a mutant behaves similarly to the real fault. If a

trivial mutant exists which introduces the same fault that is present in such

a student’s faulty solution, they are coupled.

Not all of the operators that I have implemented in MutaGen introduce such

severe faults. In order to further evaluate the coupling performance of these

operators compared to those of existing mutation tools for RQ2, I introduce

a new variant of coupling analysis; bidirectional coupling. A set of mutants

is bidirectionally coupled to a student’s faulty solution, provided that both

a) every test that fails for the student’s solution fails for at least one of the

mutants (as with traditional coupling); and b) no mutant in the set causes

a test to fail that passes for the student’s solution. Bidirectional coupling

essentially evaluates that a set of mutants do not capture additional faults

that are not present in a student’s solution. The goal of this analysis is to

determine whether a set of several mutants is capable of fully simulating the

detected faults of a solution with respect to test failures. Accordingly, I do

not examine the coupling rate of faulty solutions using individual test failures

for this analysis; instead I use every test execution for a solution, treating

the solution as a single entity that can contain one or more faults. In this
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analysis, I check how many faulty solutions have at least one bidirectionally

coupled set of mutants, using mutants generated by each of the mutation

tools that I am evaluating. I include trivial mutants in this analysis, since

they will only be bidirectionally coupled with faulty solutions that also fail

every test.

In order to evaluate how killing individual mutants influences the detection

of students’ faulty solutions (RQ3), and how this can compare to covering

individual lines, I use probabilistic coupling, as defined by Chen et al. [27]

I group test goals into sets: each mutation tool’s generated mutants, and

covered lines of the model solution. I compute the detection probability for

each test goal and each student’s faulty solution, by selecting the tests that

achieve a test goal (i.e detect a mutant or cover a line) and calculating the

proportion of these that fail on the student’s solution. Where no tests achieve

a test goal, I use a probability of zero. I select the maximum probability of a

test goal in each set for every student’s faulty solution, since this allows me

to directly compare the best case scenario for each group of test goals.

9.2.2 Correlation

By finding evidence of a relationship between the detection rates of mutants

and students’ faults, I can assert that mutation analysis is an effective measure

of test adequacy. Accordingly, I investigate the correlation between these

detection rates to partially address RQ4. I only use students’ solutions for

each subject class which fail at least one test in my dataset, in order to ensure

that the maximum possible detection rate is consistent across subject classes.

Otherwise, if solutions without any detectable faults were included in this

analysis, there would be some bias due to some subject classes having more

students’ solutions that never fail tests than others. Since my dataset only

contains one test suite for each subject class, I generate test suites which

are subsets of the main test suite for each class. I control for test suite size,

targeting a consistent number of test suites for each possible size from two

tests to 70% of the total number of tests. For each suite size, I generate a
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set of test suites by randomly sampling from the complete set of tests for the

class. I discard duplicate test suites within a single run of this generation.

My generation strategy aims to generate 80 randomly sampled suites for

each class, split evenly between each possible test suite size. I repeat this

process 100 times, generating 100 sets of ∼80 suites for every class. For Queen

and DataLoader, some suite sizes cannot reach the target number of tests.

Consequently, these subjects have fewer sampled test suites overall.

By evaluating the results of tests in each generated suite on students’ faulty

solutions and mutants, I am able to determine how many mutants and

students’ faulty solutions are detected by each suite. This allows me to

calculate the mutation scores and real fault detection rate for each suite.

Since the solutions may contain multiple faults, this real fault detection rate

is truly the proportion of faulty students’ solutions that have been detected.

This presents a limitation to this empirical study; it would naturally be more

beneficial to isolate individual faults within students’ programs. However, such

an approach would be impractical, since it would require manual extraction

of each individual fault within each student’s solution, followed by manually

constructing a series of solutions that each contain one of these extracted

faults; an intractable task.

I also evaluate the correlation of line coverage and real fault detection, in

order to partly address RQ5. I only consider the model solution’s coverage

to simulate a tutor developing a test suite before any students’ solutions have

been collected. Similarly, to gain some insight for RQ6, I split my generated

mutants into multiple sets to use in this correlation analysis; a set for each

mutation tool, as well as sets which combine mutants generated by multiple

mutation tools. This allows me to directly compare the correlations of the

mutation scores for each of these tools, as well as the correlation for line

coverage.

I order to determine which correlation approach to use, I first needed to

determine if my data is normally distributed. I used the Shapiro-Wilk

test [195], identifying that my observations for each variable do not fit a normal

distribution; I require a non-parametric measure of correlation. Accordingly,
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I compute the Spearman’s correlation between the adequacy metric (i.e. the

mutation score of a set of mutants, or the line coverage ratio) and the real

fault detection rate.

Unlike my analysis of the coupling effect, I do not remove mutants that failed

on every test prior to evaluating the correlation of mutation score to real fault

detection. This approach better represents how a tutor would use a mutation

tool to evaluate their grading test suites; determining how many mutants are

detected by a test suite, and identifying those which are not.

9.2.3 Growth-Based Suite Generator

To address RQ4, RQ5, and RQ6, I also compare the fault detection capabil-

ities of test suites that are guided by line coverage, or the mutants generated

by each mutation tool. In order to create such test suites, I adapted the

growth-based test suite generator that I describe in Chapter 5.2.3, inspired

by the work of Chen et al. [27] Given a target adequacy metric (e.g. line

coverage, mutation score for mutants generated by a specific mutation tool, or

both), the generator performs the following procedure for a single generation

run:

1. Randomly select a test from the whole set to use as a starting test suite.

2. Identify unused tests from the set that increase the target adequacy

metric (e.g. have a higher mutation score, or cover more lines), then

randomly select one of them and add it to the test suite.

(a) Alternatively, if configured accordingly, switch from one adequacy

metric (e.g. coverage) to another (e.g. mutation score) once the

first has reached 100%, in order to simulate a tutor using both

adequacy metrics to develop a test suite.

3. Store a copy of the test suite in its current form. This allows me to

compare the fault detection performance of different test suites that

have the same number of tests.
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4. Repeat from step 2 until either:

(a) The adequacy metric has reached 100% (or the second adequacy

metric has reached 100%, if two are used); or

(b) Only one unselected test remains. This prevents the generator

from always generating the exact same test suite for every run.

Since this suite growth approach involves random selection, I run the sampler

100 times for each subject class, to yield a wide range of test suites for my

analysis.

This generation approach allows me to compare the adequacy metrics with

respect to how they guide the improvement of test suites, in two ways. First,

I can identify which adequacy metric guides the generation of the smallest

test suite which can still detect the maximum number of faulty students’

solutions. Second, I can compare the fault detection performance of test

suites generated according to different adequacy metrics at every possible test

suite size. These analysis approaches allow me to understand which adequacy

metric can guide the creation of an effective test suite with the least effort

from a tutor (i.e. writing the fewest tests).

9.3 Threats to Validity

In this chapter, one of my goals is to evaluate how effectively mutants generated

by MutaGen can simulate programming faults made by students. Due to the

limited nature of my dataset, I must compare MutaGen’s mutants to students’

faulty solutions from part of the same dataset which I originally used to

identify students’ mistakes. This presents a potential threat to validity, since

I used my analysis of students’ mistakes to define the mutation operators that

I implemented in MutaGen. Using the same faulty solutions in the definition

and evaluation of these mutants limits the generalisability of the evaluation’s

results.



170 CHAPTER 9. EVALUATING MUTATION SUITABILITY

Table 9.1: Coupling Results

Class % Solutions Coupled Coupling Ratio
Major MutaGen Pit All Mutants

Board 100.0 1 1 1 1
Queen 100.0 1 1 1 1
Cellar 91.4 0.99 0.949 0.99 0.997
DataLoader 100.0 1 1 1 1
Questions 100.0 1 0.472 1 1

Mean 98.3 0.998 0.884 0.998 0.999

One approach to reduce this threat to validity would be to use cross-validation;

using different solutions’ mistakes to define and evaluate the mutation opera-

tors. However, such an approach would not be appropriate in this context; it

is unlikely that a mutant would not couple to a set of faulty solutions which

explicitly exclude solutions with mistakes that the mutant’s operator aims to

replicate.

9.4 Results & Analysis

9.4.1 RQ1: Are mutants coupled to students’ faulty

programs?

Table 9.1 presents the results of my coupling analysis. I find that for four of

my subject classes, every solution is coupled to a set of mutants. Of Cellar’s

35 solutions that fail at least one test, three are uncoupled. These three

uncoupled solutions each fail every test; one or more of these tests do not

fail for any non-trivial mutant. These three solutions are coupled to trivial

mutants, but since such mutants may introduce entirely unrelated faults, I

will further investigate their coupling in RQ2.

I also consider the relationship between a solution’s test failures and how

many mutants it is coupled to. Figure 9.1 presents my observations. First, I

note that there appears to be a linear relationship between test failures and

coupling for most of the subject classes, typically irrespective of the mutation
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(a) All mutants
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(b) Major’s mutants
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(c) MutaGen’s mutants
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(d) Pit’s mutants

Figure 9.1: Observations of coupled mutants and failing tests for each student’s
solution. Each datapoint has the same opacity; darker points represent more
datapoints.
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tool. This occurs since some mutants will only be detected by particular

tests, and therefore will be more likely to couple to solutions which fail more

tests. Queen presents an exception to this; solutions which fail the minimum

number of tests are coupled to few mutants, but solutions which fail any

more tests are coupled to the overwhelming majority of mutants. For this

class, it is likely that most mutants will be detected by particular tests, so

any solutions which fail such tests will also be coupled to these mutants.

RQ1: Non-trivial mutants are coupled to most of the students’ faulty

solutions. There is typically a linear relationship between the number of

tests a solution fails and the number of mutants it is coupled to.

9.4.2 RQ2: Does MutaGen improve fault simulation?

The most apparent observation I can make is that, as shown in Table 9.1,

MutaGen’s non-trivial mutants are coupled to fewer solutions, with a lower

coupling rate for both Cellar (0.949), and Questions (0.472). This is likely

due to MutaGen’s operators not targeting some fault classes, such as simple

calculation mistakes, which are likely more prevalent in solutions for these

subject classes. I did not implement such operators in MutaGen, since they

are already adequately represented in these existing mutation tools. This

result indicates that specifically simulating particular types of mistakes that

students make does not always provide a clear benefit over using operators

that introduce more generalisable and subtle faults.

Upon manually examining the three solutions that are not coupled to any

non-trivial mutants, MutaGen’s true benefit is revealed. All three of these

solutions fail every test due to not including a public access modifier in the

class’ constructor; every test attempts to call this constructor, but cannot

for these three solutions. While this fault is not simulated by mutants

generated by Pit or Major, MutaGen implements an operator that specifically

introduces this fault; it generates a mutant that perfectly simulates the

otherwise uncoupled fault. I excluded this mutant from my previous analysis
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Table 9.2: Bidirectional Coupling Results

Solutions Bidirectionally Coupled to Mutants
Class Faulty Solutions All Major & Pit Major MutaGen Pit

Board 43 40 39 38 8 39
Queen 34 16 13 11 10 13
Cellar 35 12 12 9 6 12
DataLoader 38 36 16 1 9 16
Questions 34 8 8 8 4 8

since it fails every test; it and every other trivial mutant would couple to

every solution if they were included.

I also manually inspected the coupling results for mutants generated by both

Major and Pit. I found that two additional solutions for Cellar are not

coupled to these mutants. These solutions both fail a test by modifying the

reference of a List object, instead of a copy of the object. However, these

solutions are coupled to some mutants generated by MutaGen, specifically

those that are generated by my Replace Object Copy with Reference operator.

Table 9.2 shows the results of my bidirectional coupling analysis. This criterion

is much stricter than traditional coupling, since it requires a combined set

of mutants to fail exactly the same tests as a solution. While MutaGen’s

mutants alone have a fairly low bidirectional coupling rate compared to the

other tools, adding these mutants to those generated by the other tools (All vs.

Major & Pit) improves the bidirectional coupling rate for three of the subject

classes. This effect is especially prevalent for DataLoader; adding MutaGen’s

mutants more than doubles the number of bidirectionally coupled solutions.

Using MutaGen in conjunction with other, more generalised mutation tools

can generate groups of mutants that, when combined, can more accurately

simulate students’ faults.

RQ2: While MutaGen’s mutants are not coupled with students’ solutions

as much as mutants generated by the other mutation tools, MutaGen

implements unique operators that directly simulate otherwise uncoupled

faults. MutaGen offers a clear benefit when combined with other mutation

tools.
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Figure 9.2: Maximum solution detection probabilities of every student’s
solution for each set of test goals.

9.4.3 RQ3: Do mutants sufficiently capture the sub-

tlety of students’ faults?

Figure 9.2 presents the results of my probabilistic coupling analysis. I find

that mutants generated by Major and Pit, and—by extension—the whole set

of mutants have the highest overall maximum detection probabilities, with

an average maximum detection probability of 100% for four of the subject

classes. The only class where they do not achieve an average maximum of

100% is Queen, where they still have the highest average maximum detection

probabilities. This high probabilistic coupling reveals that, for most students’

solutions, there exists a mutant for which every test that detects the mutant

also fails on the student’s solution. Such mutants would not introduce faults

outside the scope of the students’ solutions.

This effect does not occur in most of the subjects for MutaGen; its mutants

rarely yield a 100% maximum detection probability. MutaGen’s operators

generate more complex faults, which will often cause more test failures than

unrelated and simpler students’ faults. A similar effect occurs for coverage,

though to a lesser extent, and for a different reason; many tests can cover a

line, but not all of these tests will detect subtle faults.

Another clear observation I make from this analysis is that many solutions

for Queen have relatively low maximum detection probabilities for each set of

test goals. This indicates that many solutions for this subject are very subtle;
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Table 9.3: Mean Spearman’s correlations (rs) of the detection rate of faulty
students’ solutions and both adequacy metrics; mutation score and code
coverage. The correlations for mutation score are shown for each mutation
tool, and a combination of mutants generated by every tool. p = p-value.

Class Mutation Score Coverage

All Major MutaGen Pit

rs p rs p rs p rs p rs p

Board 0.62 <0.01 0.55 <0.01 0.46 <0.01 0.64 <0.01 0.64 <0.01
Queen 0.46 <0.01 0.46 <0.01 0.37 <0.05 0.44 <0.01 0.25 0.10
Cellar 0.75 <0.01 0.76 <0.01 0.72 <0.01 0.74 <0.01 0.71 <0.01
DataLoader 0.29 <0.05 0.20 0.13 0.25 0.06 0.30 <0.05 0.49 <0.01
Questions 0.80 <0.01 0.80 <0.01 0.77 <0.01 0.80 <0.01 0.84 <0.01

Mean 0.58 <0.05 0.55 <0.05 0.51 <0.05 0.58 <0.01 0.58 <0.05

even more subtle than simple mutants in some cases. It is possible that this

is caused by the solution classes only functioning correctly with their original

student-written dependency classes, which I replaced for this experiment.

RQ3: Major and Pit’s mutants achieve the highest probabilistic coupling

for students’ solutions; they are often more subtle than students’ faults,

and do not cause extra tests to fail. While I found that MutaGen can

improve bidirectional coupling in RQ2, in isolation its mutants are often

more complex than students’ faults, causing additional test failures. I also

find that coverage is weaker than mutation in terms of probabilistic coupling;

students’ faults are often subtle, and are not always detected merely by

being executed by a test.

9.4.4 RQ4: Is mutation score analogous to real fault

detection?

Table 9.3 shows the mean correlations between mutation score and the

detection rate of students’ faulty solutions. Figure 9.3 shows this correlation

for each student’s solution. I find that there is a positive, statistically

significant correlation between mutation score and the detection rate of

students’ faulty solutions; 0.58 for all mutants. This supports my hypothesis
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Figure 9.3: Correlations to detection rate of faulty students’ solutions for
each test suite, across 100 repetitions.

that improving the mutation score of a test suite improves the detection of

students’ faults.

The strength of this correlation varies between the subject classes. The

strongest correlation is for Questions (0.80), while the weakest occurs for

DataLoader (0.29). It is likely that this is due to the nature of these classes.

Questions is a series of independent methods that perform calculations on

a set of data, and return the result; mutants are particularly effective in

simulating such calculation faults. In comparison, DataLoader primarily

requires the implementation of a file parser; students tend to make more

complex logical errors, fail to throw exceptions properly, or fundamentally

misunderstand how the parser should operate. While I implemented several

operators to address some of these issues in MutaGen, particularly exception

management and branch ordering, the vast majority of mutants do not directly

replicate such faults.

RQ4: There is a statistically significant positive correlation between

mutation score and the detection rate of students’ faulty solutions, of 0.58

on average. The magnitude of this correlation varies between the subject

classes.
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Figure 9.4: Observed property measurements for each test suite, across 100
repetitions.

9.4.5 RQ5: How do mutation score and code cover-

age compare in their effectiveness as adequacy

metrics?

As shown in Table 9.3, the correlations for mutation score (with all mutants)

and coverage are equal. This reveals that mutation score and coverage serve

as similarly effective adequacy metrics for this dataset. This is reflected for

Board, Cellar, and Questions; each of these subjects yield approximately

the same correlations for mutation score and coverage. However, coverage

does not have a statistically significant correlation for Queen (p = 0.10). The

reason for this is revealed by Figure 9.4, which summarises the individual

observations of each of the test suites. In Queen, there is a range of the

proportion of students’ solutions that the suites detect, but there is almost

no change in coverage; the coverage of each suite is very high, 100% for most

of the test suites. Since there is so little variance for coverage, no statistically

correlation can be made. DataLoader also presents a divergence; mutation

score has a considerably lower correlation than coverage (0.29 vs. 0.49). This

is likely due to students’ faults being fairly easy to detect, providing some

affinity for coverage, while not aligning with mutants in their manifestation.

For example, I found that many students’ solutions did not correctly throw

the expected exceptions when invalid data is parsed. While this is directly

simulated by some mutants, the majority of mutants are simply unrelated.
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Figure 9.5: Performance of suites generated by growth strategies that target
mutants and covered lines. The intervals marked in grey denote the margin
of error.

Considering the limitations of only analysing the correlation of adequacy

metrics [27], I also employ an analysis of suite growth, the results of which are

shown in Figure 9.5. These results show that for three of the subject classes,

Cellar, DataLoader, and Questions, the suites grown according to coverage

and mutant detection perform similarly, with each strategy converging to

maximum fault detection with approximately the same number of tests.

Coverage focused suites do, however, appear to reach this peak fault detection

slightly earlier than suites that are grown according to mutation score. Board

and Queen exhibit different behaviour; coverage focused suites detect more

faults with few tests, but at their maximum size they detect fewer solutions

than the maximum for suites grown according to mutant detection. It is likely

that these subject classes are easy to cover; since the suite growth ends once

100% coverage is reached, coverage based suites are smaller. Similarly, small

coverage optimised suites may detect so many faults due to many students’

solutions containing easily detected faults, which are revealed if they are

merely executed. Other solutions may contain much harder to detect faults;

some suites with 100% coverage cannot detect them, but suites with a high

mutation score can.

I also combine both uncovered lines and unkilled mutants as a merged suite

growth strategy; suites are grown to achieve 100% coverage first, then are

grown to detect mutants once this is achieved. Suites that are grown according

to this merged strategy perform the best for most of the subject classes; they
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converge on 100% detection with fewer tests than the other strategies. This

approach also detects more faulty solutions for Queen; each of the growth

strategies are exhausted before reaching maximum suite adequacy when used

independently, but not when they are employed together. Both of these

observations suggest that it is beneficial to first use coverage to build a

grading test suite, and to then use mutation testing to further improve the

test suite.

RQ5: Mutation score and coverage are similarly correlated to the detection

rate of students’ faulty solutions. Independently, growing test suites to kill

additional mutants or to detect more lines typically results in similar fault

detection performance, though mutant focused growth does yield larger

test suites that detect more faults in some cases. However, combining both

coverage and mutants to grow test suites yields the most effective test suites.

9.4.6 RQ6: Which mutation tool produces mutants

that best represent students’ faults?

First, I consider the correlations of each tool’s mutation score to the detection

rate of faulty solutions, as presented in Table 9.3 and Figure 9.3. Major’s

mutants fail to achieve a statistically significant correlation for DataLoader,

but achieve a similar correlation to the other mutation tools for the other

subject classes. Major only generates mutants that replace values and op-

erators, or delete statements; it is likely that such faults are not reflected

in the students’ faulty solutions for DataLoader. MutaGen’s mutants have

the lowest correlation overall. This is to be expected; I explicitly did not

implement operators that are already implemented by existing tools. Pit

yields the highest overall correlation. This is likely due in part to it generating

the most mutants from the greatest number of operators (29); it is more likely

that Pit’s generated mutants will cause similar test failures to the students’

solutions. Combining the mutants of every tool produces a similar correlation

to that of using Pit’s mutants alone.
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Figure 9.6: Performance of suites generated by growth strategies that target
mutants generated by each mutation tool. The intervals marked in grey
denote the margin of error.

As Chen et al. note, only comparing the correlations of adequacy criteria has

considerable limitations [27]. Consequently, I also analyse the performance of

suites grown according to mutants generated by each tool. Figure 9.6 shows

the results of this analysis. I find that, despite its mutants’ lower correlation

to the detection rate of students’ faulty solutions, Major slightly outperforms

Pit; suites that are grown according to Major’s mutants reach maximum

fault detection with fewer tests. This suggests that it is sufficient to only

use simpler mutation operators, such as those implemented by Major, rather

than a wide range of operators that introduce more esoteric faults, such as

those implemented by Pit’s extended set of operators. This itself supports

the presence of the coupling effect for students’ solution programs; suites that

detect simple mutants also detect more complex faults. I also find that for

three of the subject classes, MutaGen clearly exhibits the weakest performance;

suites that are grown until all of its mutants are detected fail to identify

every faulty student’s solution. This does not necessarily mean that MutaGen

provides no benefit; for example, in Queen, suites that target MutaGen’s

mutants detect many students’ solutions with few tests. Therefore, it is

possible that combining MutaGen with other tools, as I originally intended,

may offer a practical benefit to improving a grading test suite’s adequacy.

In order to evaluate how using mutants from multiple tools benefits suite

development, I repeat this suite growth analysis, comparing the use of different

combinations of mutants as growth targets, as shown in Figure 9.7. Specifically,
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Figure 9.7: Performance of suites generated by growth strategies that target
different combinations of mutants. I also include mutants generated by only
Major, the best single tool, as a baseline to compare the combined sets against.
The intervals marked in grey denote the margin of error.

I compare the use of every mutant to the use of only mutants generated by

Major and Pit, in order to determine if adding MutaGen’s mutants benefits

fault detection. I find that including MutaGen’s mutants offers no clear

benefit for any of the subject classes, and is detrimental for Board, Queen,

and Cellar; suites grown according to only Major and Pit’s mutants either

detect a higher maximum number of students’ solutions, or reach maximum

fault adequacy with fewer tests. While MutaGen can produce some mutants

that directly replicate students’ faults, some of the faults that it replicates are

fairly uncommon within the dataset, and may not even be made by students

for some subject classes. It is likely that the inclusion of these operators that

replicate uncommon faults limits detection performance; including irrelevant

mutants reduces the likelihood that a test which detects a relevant mutant is

selected by the sampler.

I also compare combining mutants generated with Major and Pit against

only using Major’s mutants, which I previously found to be the most effective

mutants from a single tool. This allows me to investigate if merging mutant

sets improves fault detection. I find that adding Pit’s mutants to Major’s

mutants only offers a considerable benefit for Queen, where it results in an

improved maximum fault detection rate. For this subject class, it is likely that

Pit’s mutants accurately replicate some of the faults made by students, as

shown by my bidirectional coupling analysis (Table 9.2), where Pit’s mutants
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are bidirectionally coupled to more solutions than those of any other tool.

Including these mutants would make it more likely that my suite growth

approach selects tests which detect such faults. However, for Board, including

Pit’s mutants increases the number of tests required to reach maximum fault

adequacy; Pit’s more complex operators may simply not reflect the mistakes

that students make for this class. Consequently, I can conclude that the

subject itself plays a role in the effectiveness of mutant adequacy, since a

program’s requirements may influence the mistakes that students make, and

therefore, which operators best simulate these mistakes. Despite this, simpler

mutants, such as those that I generated using Major, can sufficiently simulate

students’ faults in most cases.

This provides some supporting evidence for the competent programmer hy-

pothesis, since simple mutants can effectively simulate most students’ faults.

Students may not always strictly be “competent programmers,” but their

mistakes are often simple enough that a set of mutants can simulate them.

These simple mutants are applicable to evaluate the adequacy of grading test

suites, and to guide their development.

RQ6: Despite their underwhelming correlation to fault detection, Major’s

mutants are typically the most capable of guiding a test suite to reveal more

students’ faulty solutions; simple mutants can sufficiently simulate students’

mistakes. Combining these mutants with those of other tools improves fault

detection in some cases, especially Queen, but not in general; it is likely not

worth including more complex mutation operators unless they specifically

target faults that students are especially likely to make for a programming

task. Although some of its operators directly simulate some faults, MutaGen

offers little benefit in improving the fault detection rate of a test suite.

9.5 Conclusion

In this chapter, I have conducted an empirical study to investigate the

suitability of using mutants to simulate students’ faults, and in turn their
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applicability to improving grading test suites. Using the results of this study,

I provide evidence that:

• The coupling effect holds for the vast majority of students’ solution

programs.

• My mutation tool, MutaGen, produces effective simulations of students’

faults that other mutation tools cannot.

• Mutants can capture the subtleties of students’ faults where line coverage

does not.

• There is a positive correlation between the detection rates of mutants

and students’ faulty solutions.

• In isolation, using mutation testing and code coverage to guide test

selection produces similarly effective test suites, but using coverage

followed by mutation produces more effective test suites.

• Simple mutation operators, such as those implemented by Major, are

generally sufficient to inform the development of a grading test suite;

using more complex operators in addition to these yields diminishing

returns.





Chapter 10

Conclusions & Future Work

10.1 Summary of Contributions

In this thesis, I have made eight key scientific contributions:

Contribution 4.1 An open-source modular automated assessment tool

that also enhances manual assessment. I developed a modular automated

assessment system, Gradeer, originally as a platform to gather execution

data for my empirical studies. I later deployed Gradeer in an introductory

Java programming module, where the module’s lead and teaching assistants

used the system to assess students’ solution programs. This required the

introduction of new features, including a feature to automatically execute a

student’s program and show its source code, to reduce the repetitive tasks

involved with manual assessment.

Contribution 5.1 Empirical evidence that different test suites can yield

significantly varying grades for students’ solution programs. I conducted an

empirical study using the grades generated by sampled test suites for students’

solution programs. I found that the sampled test suites generated grades that

185
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varied greatly for each solution, with a mean standard deviation of grades for

each solution of ∼12.2%.

Contribution 5.2 A statistical comparison of how various observable prop-

erties of test suites influence the grades that they generate. I performed

a relative importance analysis for several observable properties of sampled

test suites and the change in grades that they produce for students’ solution

programs. I find that these properties have a significant impact on generated

grades. In order of descending importance, these properties are:

• Detection rate of other students’ faulty solutions,

• Size (the number of tests in a suite),

• Uniqueness (which increases as the lines of a program are covered by

different tests to one another),

• Mutation score (the proportion of mutants that a suite kills),

• Coverage (the proportion of lines in the reference solution that a suite

executes),

• Diversity (the likelihood that two tests cover different lines), and

• Density (the average number of lines covered by each test).

Contribution 6.1 A qualitative analysis of students’ programming mistakes.

I used a coding process to categorise students’ programming mistakes that

I observe in both of my datasets. I identified 30 mistake categories that

impact the functionality of students’ programs (i.e. could cause test failures),

eight that prevent them from compiling, and 18 that violate style and quality

conventions.
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Contribution 7.1 Definitions of new mutation operators to simulate stu-

dents’ programming mistakes. I used the functionality mistake categories

that I identified in Chapter 6 to derive new mutation operators, which would

generate mutants to simulate these mistakes. Some of these mistake cate-

gories are already represented by operators that are implemented by existing

mutation tools. Consequently, I only defined operators for the partially or

completely unrepresented mistakes; I defined 17 new mutation operators.

Contribution 8.1 A prototype mutation tool that implements my new

mutation operators. I implemented the mutation operators that I defined in

Chapter 7 as a mutation tool, MutaGen. The tool manipulates the abstract

syntax tree of a reference solution program’s source code to generate mutants

for each of my newly defined mutation operators.

Contribution 9.1 Empirical evidence that the coupling effect holds for

mutants and students’ solution programs. I performed an empirical study on

the subject classes of my EndOfYear dataset and the mutants generated

from their reference solutions, to investigate if the coupling effect holds for

mutants and students’ faulty solutions. I found that most students’ faulty

solutions are coupled to non-trivial mutants (i.e. mutants that do not fail

every test). The remaining uncoupled faulty solutions fail every test, and

are directly simulated by mutants generated by one of MutaGen’s operators

(Replace Object Copy with Reference). I also performed a probabilistic coupling

analysis, which reveals how well any test goal (i.e. a covered line or a killed

mutant) represents each detected fault in the students’ solution programs.

I found that there exists a mutant that achieves a maximum probabilistic

coupling for the majority of students’ faulty solutions, and that mutants

outperform covered lines in this regard.

Contribution 9.2 An empirical comparison of the effectiveness of code

coverage and mutants generated by different tools in evaluating the adequacy

of a grading test suite. I used two empirical analysis approaches to evaluate
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the effectiveness of mutants in simulating students’ faults; a simple correlation

analysis, and an evaluation of fault detection for suites grown according to

an adequacy criteria. I found that there is a positive correlation between the

detection of mutants and students’ faulty solutions, and that coverage yields

a similarly positive correlation to the detection of students’ faulty solutions.

This was reflected by my suite growth analysis, where I found that suites that

I grew according to mutants and coverage perform similarly in their detection

of students’ faults. I also found that combining coverage and mutation—by

first achieving maximum coverage, then maximising mutation score—yields

test suites which are able to detect the most students’ solutions that contain

faults. Finally, I find that mutants generated by Major (which only includes

simple mutation operators) provide a more accurate adequacy metric than the

mutants generated by other mutation tools (which implement more complex

mutation operators), and that including mutants from other tools fails to

make a considerable improvement in this regard.

10.2 Suggestions for Tutors

From my findings, I am able to provide several suggestions for tutors aiming

to develop or improve a grading test suite for a programming task. These

suggestions can be applied using a reference solution which implements the

specification of the programming assignment:

• First employ code coverage metrics, since they can quickly reveal where

some aspects of the task’s specification are not tested.

• Use mutation testing to guide the development of the test suite. Simple

mutation operators (i.e. the default operators used by most mutation

tools) are sufficient for this.

• Write tests that exercise the specification and reference solution in

different ways. This is effectively measured by diagnosability metrics,

such as uniqueness and diversity, though these may be difficult to
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interpret.

10.3 Future Work

Throughout my research, I have identified several possible avenues for future

work in improving test based automated assessment.

10.3.1 Further Exploration of Mutation Testing

There is a clear scope to further investigate how mutation testing and analysis

can be applied to evaluating the adequacy of a grading test suite.

Evaluating Individual Mutation Operators By conducting an empirical

study of how well mutants generated by individual operators simulate students’

faults, the most effective mutation operators can be identified. This would

allow for only the most effective set of operators to be used to generate mutants,

which in turn would limit the number of generated mutants, reducing the

costs associated with mutation testing and analysis.

Understanding Tutors’ Use of Mutation Testing & Analysis It

would also be beneficial to understand how tutors would apply mutation

testing to the development of their grading test suites. For example, mutation

testing does have some challenges; equivalent mutants must be manually

identified before mutation analysis offers a benefit, and running mutants can

take a considerable amount of time. It is possible for tutors to be overcome

by these challenges; tutors may not consider mutation testing and analysis

to be worth using due to them. Human studies and case studies would offer

some insight into how tutors address such challenges, and how useful they

find mutants to be. Performing a human study to investigate this would

be a significant challenge; it would require the participation of tutors, who



190 CHAPTER 10. CONCLUSIONS & FUTURE WORK

often face time constraints that may be make them hesitant to participate

in a human study. In addition, understanding an unfamiliar programming

assignment’s specification and writing tests to satisfy is incredibly time

consuming, introducing practical limitations to running such a human study.

It is likely more practical for a tutor who is interested in using mutation testing

to perform a case study with one of their own programming assignments.

Such a case study could investigate the challenges that they encounter, and

how applying mutation analysis affects their test suites, such as in detecting

students’ faults, or in influencing the grades that it generates.

Higher Order Mutants Since some students’ solutions contain multiple

distinct faults, it is possible that combining multiple single mutants to produce

higher order mutants (HOMs) may be beneficial. This may offer some

advantage for mutation testing, since HOMs are less likely to be equivalent,

and in some cases can be more subtle than first order mutants [148]; using

HOMs may save a tutor’s time. The performance of HOMs in simulating

students’ faulty solutions should be investigated.

10.3.2 Evaluating & Improving Fairness

Fairness Metric Defining a metric, or series of metrics, to evaluate the

fairness of a grading test suite would be of a clear benefit to tutors; they

can gain assurance that their test suites evaluate students’ programs with

as limited a degree of bias as possible. Such a metric should reveal both

deficiencies in the test suite, and where possible faults (i.e. mutants) are

detected unevenly. While coverage and mutation score fulfil the role of the

former, diagnosability metrics, such as uniqueness and diversity may benefit

the latter. Diagnosability metrics evaluate how achieved test goals relate to

one another, such as which lines are covered the same way by multiple tests.

I only used line coverage for the test goals in my analysis of diagnosability in

Chapter 5; mutants can be used instead. For some programs, more mutants

can be generated than there are lines to cover; using mutants to derive
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diagnosability metrics would likely yield different results, which should be

evaluated for how they reflect fairness.

Weight Generation It is possible to assign weights to individual tests to

modify the impact that they have on grade generation. For example, Gradeer

implements such functionality. A test suite that achieves 100% coverage and

mutation score may still produce unfair grades if some types of faults, or some

learning outcomes, are evaluated far more than others. Therefore, weighting

tests can reduce unfairness; reducing the weights of tests that evaluate similar

aspects of a task’s specification can make their impact more similar to that of

a single test that evaluates another aspect of the specification alone. Defining

an accurate fairness metric would allow for the effectiveness of such weights

to be predicted. Accordingly, such a fairness metric could be used to generate

such weights; a search algorithm can be applied to determine which weights

yield the highest fairness estimate.

Challenges Developing and applying such a fairness metric poses a particu-

larly significant challenge; how should its effectiveness be evaluated? Existing

grades cannot be used as a baseline; there is no guarantee that they are

truly fair. One possible approach is to have several tutors manually grade

a series of solution programs, and to use the mean grade for each solution

as a benchmark “fair” grade. This is impractical, however, there is often no

reason for multiple people to assess the same solutions, aside from doing so

for a small sample of solutions to moderate grades.

10.3.3 Feedback Generation

Although my work has been primarily focused on the grading aspect of

automated assessment, the generation of feedback is also incredibly important.
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Mutants to Inform Feedback Messages Mutants may be able to assist

tutors in defining feedback messages. For example, if a tutor wrote a test

that only detects mutants generated by one operator, the change that this

operator would perhaps describe the students’ mistakes that the test detects.

A tutor could add feedback associated with this test according to the operator.

However, this is fairly unlikely to be practical; a tutor would be familiar with

their programming task’s specification already, and would know what aspects

of the specification their tests evaluate.

Fault Localisation I have performed an initial investigation on the grading

impact of diagnosability metrics, which were originally designed to estimate

the effectiveness of applying fault localisation using a test suite. While I did

not directly evaluate the application of fault localisation, it offers a promising

approach for directly providing students with feedback. Fault localisation tools

provide estimated locations of faults within a program that fails tests [169].

This output could serve as effective feedback for helping students to find,

understand, and resolve their faults.
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abeth S. Adams, John Hamer, Jan Erik Moström, Beth Simon, Sue

Fitzgerald, Morten Lindholm, Kate Sanders, and Lynda Thomas. A

multi-national study of reading and tracing skills in novice program-

mers. In SIGCSE Bull. (Association Comput. Mach. Spec. Interes. Gr.

Comput. Sci. Educ., volume 36, pages 119–150. ACM PUB27 New York,

NY, USA, dec 2004.

[32] Geetha Kanaparan, Rowena Cullen, and David Mason. Effect of Self-

efficacy and Emotional Engagement on Introductory Programming

Students. Australas. J. Inf. Syst., 23:1–21, jul 2017.

[33] Jessica Q. Dawson, Alice Campbell, Meghan Allen, and Anasazi Valair.

Designing an introductory programming course to improve non-majors’

experiences. In SIGCSE 2018 - Proc. 49th ACM Tech. Symp. Comput.

Sci. Educ., volume 2018-Janua, pages 26–31. Association for Computing

Machinery, Inc, feb 2018.

[34] Soonhye Park and J. Steve Oliver. Revisiting the conceptualisation of

pedagogical content knowledge (PCK): PCK as a conceptual tool to

understand teachers as professionals. Res. Sci. Educ., 38(3):261–284,

jun 2008.

[35] L. Ma, J. Ferguson, M. Roper, and M. Wood. Investigating and improv-

ing the models of programming concepts held by novice programmers.

Comput. Sci. Educ., 21(1):57–80, mar 2011.

[36] David Starr-Glass. Moving From Passive to Active Blended Learning:

An Adopter’s Experience. Cases Act. Blended Learn. High. Educ., pages

23–42, 2021.

[37] Mary Forehand. Bloom’s Taxonomy From Emerging Perspectives on

Learning, Teaching and Technology Jump to: navigation, search. Emerg.

Perspect. Learn. Teach. Technol., 2005.



198 BIBLIOGRAPHY

[38] Lorin W Anderson. Rethinking Bloom’s Taxonomy: Implications for

Testing and Assessment. Technical report, University of South Carolina,

1999.

[39] Errol Thompson, Andrew Luxton-Reilly, Jacqueline L Whalley, Minjie

Hu, and Phil Robbins. Bloom’s Taxonomy for CS Assessment. In Proc.

ofthe tenth Conf. Australas. Comput. Educ., pages 155–161, 2008.

[40] Colin G. Johnson and Ursula Fuller. Is Bloom’s taxonomy appropriate

for computer science? In Balt. Sea ’06 Proc. 6th Balt. Sea Conf. Comput.

Educ. Res. Koli Call. 2006, volume 276, pages 120–123, 2006.

[41] Ursula Fuller, Colin G. Johnson, Tuukka Ahoniemi, Diana Cukierman,

Isidoro Hernán-Losada, Jana Jackova, Essi Lahtinen, Tracy L. Lewis,

Donna McGee Thompson, Charles Riedesel, and Errol Thompson. De-

veloping a computer science-specific learning taxonomy. ACM SIGCSE

Bull., 39(4):152–170, dec 2007.

[42] Russel E. Bruhn and Philip J. Burton. An approach to teaching Java

using computers. ACM SIGCSE Bull., 35(4):94–99, dec 2003.

[43] Marko Hassinen and Hannu Mäyrä. Learning Programming by Pro-
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